

 MENU
	Products
	PDF SDKfor Web
	PDF SDKfor Windows
	PDF SDKfor Mac
	PDF SDKfor Linux
	PDF SDKfor Android
	PDF SDKfor iOS
	PDF SDK Overview
	PDF Conversion SDK
	Plugins
	Cordova
	WebPDF.js
	Xamarin
	React Native
	Kotlin

	Features & Add-ons
	Digital Rights Management
	OCR Document Scanning
	PDF/A Compliance
	Redaction
	XFA Forms

	Business Success
	Industries
	Case Studies
	Whitepapers
	GDPR Compliance

	Documentation
	Web
	Windows
	Mac
	Linux
	Android
	iOS
	Documentation Home

	News
	News
	Blog
	Changelog
	Latest release

	Get a Quote
	Free trial

 MENU
	Products
	PDF SDK
	Web
	Windows
	Mac
	Linux
	Android
	iOS
	PDF SDK Overview
	PDF Conversion SDK

	Plugins & Support
	GithubCordova
	GithubWebPDF.js
	GithubXamarin
	GithubReact Native
	GithubKotlin

	All Plugins
	Features & Add-ons
	Digital Rights Management
	OCR Document Scanning
	PDF/A Compliance
	Redaction
	XFA Forms

	All

	Business Success
	Industries
	Engineering
	Healthcare
	Insurance
	Compliance
	Banking

	All Industries
	Solutions
	Case Studies
	White papers
	GDPR Compliance

	Documentation
	Documentation
	Web
	Windows
	Mac
	Linux
	Android
	iOS
	PDF Conversion SDK
	Documentation Home

	News
	News
	Blog
	Latest Release
	Changelog
	All News

	Get a quote
	Free Trial

 Documentation

Choose version

v6.4

v8.2

v8.1

v8.0

v7.6

v7.5

v7.4

v7.3

v7.2

v7.1

v7.0

Foxit PDF SDK for iOS

Developer Guide for Foxit PDF SDK for iOS (6.4)

Contents
	Introduction to Foxit PDF SDK
	Getting Started
	Rapidly building a full-featured PDF Reader
	Customizing User Interface
	Working with SDK API
	Form
	Creating a Custom Tool
	Implement Foxit PDF SDK for iOS using Cordova
	Implement Foxit PDF SDK for iOS using React Native
	Implement Foxit PDF SDK for iOS using Xamarin
	FAQ
	Bitcode Support
	Add a link annotation to a PDF file
	Print PDF document
	Technical Support

Introduction to Foxit PDF SDK

Foxit PDF SDK provides high-performance libraries to help any software developer add robust PDF functionality to their enterprise, mobile and cloud applications across all platforms (includes Windows, Mac, Linux, Web, Android, iOS, and UWP), using the most popular development languages and environments.

Application developers who use Foxit PDF SDK can leverage Foxit’s powerful, standard compliant PDF technology to securely display, create, edit, annotate, format, organize, print, share, secure, search documents as well as to fill PDF forms. Additionally, Foxit PDF SDK includes a built-in, embeddable PDF Viewer, making the development process easier and faster. For more detailed information, please visit the website https://developers.foxit.com/pdf-sdk/. In this guide, we focus on the introduction of Foxit PDF SDK for Android platform.

Foxit PDF SDK for iOS

Have you ever worried about the complexity of the PDF specification? Or have you ever felt lost when asked to build a full-featured PDF app within a limited time-frame? If your answer is “Yes”, then congratulations! You have just found the best solution in the industry for rapidly integrating PDF functionality into your apps.

Foxit PDF SDK for iOS focuses on helping developers easily integrate powerful Foxit PDF technology into their own mobile apps. With this SDK, even developers with a limited knowledge of PDF can quickly build a professional PDF viewer with just a few lines of code on iOS platform.

Why Foxit PDF SDK for iOS is your choice

Foxit is an Amazon-invested leading software provider of solutions for reading, editing, creating, organizing, and securing PDF documents. Foxit PDF SDK libraries have been used in many of today’s leading apps, and they are proven, robust, and battle-tested to provide the quality, performance, and features that the industry’s largest apps demand.

Foxit PDF SDK for iOS provides quick PDF viewing and manipulation support for iOS Devices. Customers choose it for the following reasons:

	Easy to integrate

Developers can seamlessly integrate Foxit PDF SDK for iOS into their own apps with just a few lines of code.

	Perfectly designed

Foxit PDF SDK for iOS is designed with a simple, clean, and friendly style, which provides the best user experience.

	Flexible customization

Foxit PDF SDK for iOS provides the source code for the user interface which lets the developers have full control of the functionality and appearance of their apps.

	Robust performance on mobile platforms

Foxit PDF SDK for iOS provides an OOM (out-of-memory) recovery mechanism to ensure the app has high robust performance when running the app on a mobile device which offers limited memory.

	Powered by Foxit’s high fidelity rendering PDF engine

The core technology of Foxit PDF SDK for iOS is based on Foxit’s PDF engine, which is trusted by a large number of the world’s largest and well-known companies. Foxit’s powerful engine makes the app fast on parsing, rendering, and makes document viewing consistent on a variety of devices.

	Premium World-side Support

Foxit offers premium support for its developer products because when you are developing mission critical products you need the best support. Foxit has one of the PDF industry’s largest team of support engineers. Updates are released on a regular basis to improve user experience by adding new features and enhancements.

Foxit PDF SDK for iOS

Foxit PDF SDK for iOS consists of three elements as shown in the following picture. This structure is shared between all mobile platform versions of Foxit PDF SDK, which makes it easier to integrate and support multiple mobile operating systems and frameworks in your apps.

The three elements for Foxit PDF SDK for iOS

	PDF Core API

The PDF Core API is the heart of this SDK and is built on Foxit’s powerful underlying technology. It provides the functionality for basic PDF operation features, and is utilized by the PDF View Control 0.and UI Extensions Component, which ensures the apps can achieve high performance and efficiency. The Core API can be used independently for document rendering, analysis, text extraction, text search, form filling, digital signatures, Pressure Sensitive Ink, certificate and password security,annotation creation and manipulation and much more.

	PDF View Control

The PDF View Control is a utility class that provides the functionality for developers to interact with rendering PDF documents per their requirements. With Foxit’s renowned and widely used PDF rendering technology at its core, the View Control provides fast and high quality rendering, zooming, scrolling and page navigation features. The View Control derives from platform related viewer classes (e.g. UIView on iOS) and allows for extension to accommodate specific user needs.

	UI Extensions Component

The UI Extensions Component is an open source library that provides a customizable user interface with built-in support for text selection, markup annotation, outline navigation, reading bookmarks, full-text searching, form filling, text reflow, attachment, digital/handwritten signature, reflow, document editing and password encryption. These features in the UI Extensions Component are implemented using the PDF Core API and PDF View Control. Developers can utilize these ready-to-use UI implementations to build a PDF viewer quickly with the added benefit of complete flexibility and control to customize the UI design as desired.

From version 4.0, Foxit PDF SDK for iOS makes a big change and optimization for the UI Extensions Component. It wraps the basic UI implementations to FSPDFReader class, such as panel controller, toolbar settings, and alter view, etc. Building a full-featured PDF Reader is getting simpler and easier. Furthermore, users can flexibily customize the features they want through a configuration file.

From version 5.0, Foxit PDF SDK for iOS removes the FSPDFReader class, and move the wrapped APIs in FSPDFReader class to UI Extensions Component. In version 5.0, every element in the built-in UI can be configurable. More advanced APIs and more powerful configuration file are provided for developers to further customize the UI elements, such as showing or hiding a specific panel, top/bottom bar, the items in the top bar, and the items in the View setting bar and More Menu view.

UI Extensions Component Overview

The UI Extensions Component uses “module” mechanism which refines each feature into a module. All of the modules except LocalModule (used for file management) will be loaded by default if you add UIExtension. Users can customize module through implementing Module interface class, and then call UIExtensionsManager#registerModule to register the custom module to current UIExtensions manager. When not in use, you can call UIExtensionsManager#unregisterModule to unregister it from current UIExtensions manager.

UIExtensionsManager contains the main-frame UI, such as top/bottom bar, and other UI components which are shared between each module. Meanwhile, through UIExtensionsManager, each feature module can also be loaded separately. And when loaded, the feature module will adapt and adjust the main-frame UI, as well as establish the connection of message event response. Each feature module may contain its module-specific UI components, and have its self-contained message event handling logic. UIExtensionsManager will also be responsible for distributing messages and events received from View Control component to each feature module. The following figure shows the detailed relationship between UIExtensionsManager and modules.

The relationship between UIExtensionsManager and modules

Tool handler and annotation handler will process the events from touch screen or gestures of PDFViewCtrl. When the touch screen and gestures occur, PDFViewCtrl will send the corresponding events to UIExtensionsManager:

1) If a tool handler exists currently, UIExtensionsManager will send the corresponding events to the current tool handler, and then event-handing process ends.

2) If an annotation is selected currently, UIExtensionsManager will send the corresponding events to the annotation handler corresponding to the currently selected annotation, and then event-handing process ends.

3) If currently no tool handler exists and no annotation is selected, UIExtensionsManager will send the corresponding events to selection tool handler. Text Selection tool is used for processing the related events for text selection. For example, select a piece of text, and add Highlight annotation. Blank Selection tool is used for processing the related events for blank space. For example, add a Note annotation on the blank space.

Note: Tool Handler and Annotation Handler will not respond the events at the same time. Tool Handler is primarily used for annotation creation (currently, the creation of link annotation is not supported), signature creation and text selection. Annotation Handler is mainly used for annotation editing and form filling. The following figure shows the event response flow chart between Tool Handler and Annotation Handler.

The event response flow chart between Tool Handler and Annotation Handler

Key Features of Foxit PDF SDK for iOS

Foxit PDF SDK for iOS has several main features which help app developers quickly implement the functions that they really need and reduce the development cost.

Features

PDF Document: Open and close files, set and get metadata.

PDF Page: Parse, render, read, and edit PDF pages.

Render: Graphics engine created on a bitmap for platform graphics device.

Reflow: Rearrange page content.

Crop: Crop PDF pages for better reading.

Text Select: Select text in a PDF document.

Text Search: Search text in a PDF document.

Outline: Directly locate and link to point of interest within a document.

Reading Bookmark: Mark progress and interesting passages as users read.

Annotation: Create, edit and remove annotations.

Layers: Add, edit and remove optional content groups.

Attachments: Add, edit and remove document level attachments.

Form: Fill form with JavaScript support, export and import form data by XFDF/FDF/XML file.

XFA: Support static and dynamic XFA.

Signature: Sign a PDF document, verify a signature, add or delete a signature field. Add and verify third-party digital signature.

Security: Protect PDFs with password or certificate.

Pan and Zoom: Adjust the magnification and position of the view area to match the area in an adjustable rectangle in the Pan & Zoom window’s thumbnail view of the page.

Print: Print PDF document.

RMS: Support Microsoft RMS decryption with the standard IRMv1 and IRMv2.

Out of Memory: Recover from an OOM condition.

Note: Outline is the technical term used in the PDF specification for what is commonly known as bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and tablet PDF viewers to mark progress and interesting passages as users read but are not technically outline and are stored at app level rather than within the PDF itself.

Support robust PDF applications with Foxit PDF SDK for iOS

Development of robust PDF applications is challenging on mobile platforms which has limited memory. When memory allocation fails, applications may crash or exit unexpectedly. To deal with this issue, Foxit PDF SDK for iOS provides an out-of-memory (OOM) mechanism to support applications.

OOM is an evolved feature in Foxit PDF SDK for iOS because of its complexity. The key of OOM mechanism is that Foxit PDF SDK for iOS will monitor the usage of memory and take recovery operations automatically once OOM is detected. During the recovery process, Foxit PDF SDK for iOS reloads the document and page automatically and restores the status to the original before OOM. It means the current reading page and location, as well as page view mode (single or continuous page) can be recovered. However, the data generated from editing will be lost.

Foxit PDF SDK for iOS provides the property “shouldRecover” in FSPDFViewCtrl class. By default, the value of “shouldRecover”” is “YES”. If you do not want to enable the auto-recovery when OOM is detected, you can set “shouldRecover” to “false” as follows:

self.pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

self.pdfViewerCtrl.shouldRecover = NO;

At that time, the application will throw an exception, and may crash or exit unexpectedly.

Evaluation

Foxit PDF SDK for iOS allows users to download trial version to evaluate SDK. The trial version has no difference from the standard licensed version except for the free 14-day trial limitation and the trial watermarks in the generated pages. After the evaluation period expires, customers should contact the Foxit sales team and purchase licenses to continue using Foxit PDF SDK for iOS.

License

Developers should purchase licenses to use Foxit PDF SDK for iOS in their solutions. Licenses grant developers permission to release their apps which utilize Foxit PDF SDK for iOS. However, users are prohibited to distribute any documents, sample code, or source code in the released package of Foxit PDF SDK for iOS to any third party without written permission from Foxit Software Incorporated.

About this Guide

This guide is intended for the developers who need to integrate Foxit PDF SDK for iOS into their own apps. It aims at introducing the following sections:

Introduction to Foxit PDF SDK for iOS: gives an introduction of Foxit PDF SDK, particularly for the iOS platform SDK

	Getting Started: illustrates the package structure and running demos
	Rapidly Building a PDF Reader: describes how to quickly create a full-featured PDF Reader.
	Customizing the UI Implementation: introduces how to customize the User Interface
	Working with SDK API: shows how to use Foxit PDF SDK Core API
	Creating a custom tool: shows how to create a custom tool.
	Using Cordova: shows how to implement Foxit PDF SDK using Cordova
	Using React Native: shows how to implement Foxit PDF SDK using React Native
	Using Xamarin: shows how to implement Foxit PDF SDK using Xamarin
	FAQ: lists some frequently asked questions
	Technical Support: provides support information.

Getting Started

It is very easy to setup Foxit PDF SDK for iOS and see it in action! It takes just a few minutes and we will show you how to use it on the iOS platform. The following sections introduce the structure of the installation package and how to run a demo.

Requirements

	iOS 9 or higher
	Xcode 9.0 or newer

What’s in the package

Download the “foxitpdfsdk_6_4_ios.zip” package, and extract it to a new directory like “foxitpdfsdk_6_4_ios” as shown in Figure 2-1. The package contains:

	docs: A folder containing API references, developer guide, and upgrade warnings.
	libs: A folder containing license files, SDK framework, and UI Extensions Component and source code.
	samples: A folder containing iOS sample projects.
	getting_started_ios.pdf: A quick guide for Foxit PDF SDK for iOS.
	legal.txt: Legal and copyright information.
	release_notes.txt: Release information.

Figure 2-1

In the “libs” folder as shown in Figure 2-2, there are items that make up the core components of Foxit PDF SDK for iOS.

Figure 2-2

	FoxitRDK.framework – The framework that includes the Foxit PDF SDK for iOS dynamic library and associated header files.
	uiextensionsDynamic.framework – The framework that includes UIExtensions dynamic library, associated header files, and the resource files that are needed for the default built-in UI implementations.
	uiextensions project – found in the “libs/uiextensions_src” folder. It is an open source library that contains some ready-to-use UI module implementations, which can help developers rapidly embed a fully functional PDF reader into their iOS app. Of course, developers are not forced to use the default UI, they can freely customize and design the UI for their specific apps through the “uiextensions” project.

How to run a demo

Download and install Xcode IDE (https://developer.apple.com/download/).

Note: In this guide, we do not cover the installation of Xcode. You can refer to Apple’s developer site if you haven’t installed it already.

Foxit PDF SDK for iOS provides three useful demos (Function demo, Viewer Control demo, and Complete PDF viewer demo) in both Objective-C and Swift programming languages for developers to learn how to call the SDK. The Swift demos are located in the “swift” folder. (See Figure 2-3)

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF documents.

Figure 2-3

Function demo

The function demo is provided with Objective-C and Swift programming languages, which is used to show how to use Foxit PDF SDK for iOS to realize some specific features related to PDF with PDF core API. This demo includes the following features:

	pdf2txt: extract all the text from a PDF document, and then save them to a text file.
	outline: edit outline (aka bookmark) appearances and titles.
	annotation: add annotations to a PDF page.
	docinfo: export basic information of a PDF to a TXT file.
	render: render a specified page of a PDF to a Bitmap.
	signature: add a signature to PDF, sign PDF and verify the signature.

To run it in XCode, follow the steps below:

	Double-click function_demo.xcodeproj found in the “samples/function_demo” folder to open the demo in Xcode. (For Swift, double-click function_demo_swift.xcodeproj found in the “samples/swift/function_demo_swift” folder)

Note: There is another way to open the demo in Xocde: double-click samples_xcworkspace found in the “samples” folder. It is a workspace including the three demos.

	Click on “Product -> Run” to run the demo on an iOS device or simulator. In this guide, an iPhone 8 Simulator will be used as an example. After building the demo successfully, the features are listed like the Figure 2-4.

Figure 2-4

	Click the feature buttons in the above picture to perform the corresponding actions. For example, click “pdf2txt”, and then a message box will be popped up as shown in Figure 2-5. It shows where the text file was saved to. Just run the demo and try the features.

Figure 2-5

Viewer control demo

The viewer control demo is provided with Objective-C and Swift programming languages, which is used to demonstrate how to implement the features related to the View Control feature level, such as performing annotations (note, typewriter, highlight, underline, strikeout, squiggly, etc.), outline, reading bookmarks and text search. The logical structure of the code is quite clear and simple so that developers can quickly find the detailed implementation of features which are used widely in PDF apps, such as a PDF viewer. With this demo, developers can take a closer look at the APIs provided in Foxit PDF SDK.

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Figure 2-6 shows what the demo looks like after it was built successfully. Here, an iPhone 8 Simulator will be used as an example to run the demo.

Figure 2-6

This demo provides the features like text search and listing reading bookmarks, outline and annotations.For example, click on the button below:

Then, select the second tab (outline). The outline of this document will be displayed as shown in Figure 2-7.

Note: Outline is the technical term used in the PDF specification for what is commonly known as bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and tablet PDF viewers to mark progress and interesting passages as users read but are not technically outlines and are stored at app level rather than within the PDF itself.

Figure 2-7

Complete PDF viewer demo

The complete PDF viewer demo demonstrates how to use Foxit PDF SDK for iOS to realize a completely full-featured PDF viewer which is almost ready-to-use as a real-world mobile PDF reader. This demo utilizes all of the features and built-in UI implementations which are provided in Foxit PDF SDK for iOS.

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF documents.

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Here, an iPhone 8 Simulator will also be used as an example to run the demo. After building the demo successfully, on the start screen, it lists the “Sample.pdf” and “complete_pdf_viewer_guide_ios.pdf” documents. If you want to view multiple PDF documents, click the top-right button to switch to the tabs reading mode (see Figure 2-8).

Note: If you want to use some other PDF files to test this demo, you need to put them onto the “Document” folder of the device.

Figure 2-8

Click YES to switch to the tabs reading mode. Select the “complete_pdf_viewer_guide_ios.pdf” document, and then click the top-left Back button, and select the “Sample.pdf”, then it will be displayed as shown in Figure 2-9. Now, you can browse the two PDF documents by switching the tabs.

Figure 2-9

This demo realizes a completely full-featured PDF viewer, please feel free to run it and try it.

For example, it provides the page thumbnail feature. You can click the View menu, choose the Thumbnail as shown in Figure 2-10, and then the thumbnail of the document will be displayed as shown in Figure 2-11.

Figure 2-10

Figure 2-11

Rapidly building a full-featured PDF Reader

Foxit PDF SDK for iOS wrapped all of the UI implementations including the basic UI for app and ready-to- use UI feature modules to UI Extensions Component, so that developers can easily and rapidly build a full-featured PDF Reader with just a few lines of code. This section will help you to quickly get started with using Foxit PDF SDK for iOS to make a full-featured PDF Reader app in Objective-C and Swift with step-by-step instructions provided.

Make an iOS app in Objective-C with Foxit PDF SDK for iOS

This section will help you to quickly make an iOS app in Objective-C using Foxit PDF SDK for iOS. It includes the following steps:

	Create a new iOS project in Objective-C
	Integrate Foxit PDF SDK for iOS into your apps
	Initialize Foxit PDF SDK for iOS
	Display a PDF document using FSPDFViewCtrl
	Build a full-featured PDF Reader with UI Extensions Component

Create a new iOS project in Objective-C

In this guide, we use Xcode 9.1 to create a new iOS project.

Fire up Xcode, choose File -> New -> Project…, and then select iOS -> Single View App as shown in Figure 3-1. Click Next.

Figure 3-1

Choose the options for your new project as shown in Figure 3-2. Please make sure to choose Objective-C as the programming language. For simplicity, we don’t check the Unit Tests and UI Tests which are used for automated testing. Then, Click Next.

Figure 3-2

Place the project to the location as desired. The option “version control” is not actually important for building your first PDF app, so let’s use the default setting. Here, we place the project to the desktop as shown in Figure 3-3. Then, click Create.

Figure 3-3

Integrate Foxit PDF SDK for iOS into your apps

Note: In this section, we will use the default built-in UI implementations to develop the app, for simplicity and convenience (use the UI Extensions Component directly, and don’t need to build the source code project), we need to add the following files to the pdfreader project.

	FoxitRDK.framework – The framework that includes the Foxit PDF SDK for iOS dynamic library and associated header files.
	uiextensionsDynamic.framework – The framework that includes UIExtensions dynamic library, associated header files, and the resource files that are needed for the default built-in UI implementations. ip: The UI Extensions Component (uiextensionsDynamic.framework) are not required for the following two sections “Initialize Foxit PDF SDK for iOS” and “Display a PDF document using PDFViewCtrl”, so you can just add FoxitRDK.framework to the project at first. Then, add uiextensionsDynamic.framework when you need to use the UI Extensions Component, such like the project described in the section “Build a full-featured PDF Reader with UI Extensions Component”,

To add the above two dynamic framework files into the pdfreader project, please follows the steps below:

a) Right-click the “pdfreader” project, select Add Files to “pdfreader”… as shown in Figure 3-4.

Figure 3-4

b) Find and choose “FoxitRDK.framework” in the “libs” folder of the download package, and then click Add as shown in Figure 3-5.

Note: Make sure to check the “Copy items if needed” option.

Figure 3-5

c) Repeat the steps like a) and b) to add “uiextensionsDynamic.framework”. Then, the pdfreader project will look like the Figure 3-6.

Figure 3-6

d) Add the dynamic frameworks to the Xcode’s Embedded Binaries. Left-click the project, find Embedded Binaries in the General tab, and press on the + button as shown in Figure 3-7.

Figure 3-7

Then, choose the “FoxitRDK.framework” and “uiextensionsDynamic.framework” to add, and the Embedded Binaries and Linked Frameworks and Libraries will be like Figure 3-8.

Note: Remove the repeated frameworks from Xcode’s Linked Frameworks and Libraries.

Figure 3-8

Now, we have added “FoxitRDK.framework” and “uiextensionsDynamic.framework” to the pdfreader project successfully.

Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling any APIs. The function [FSLibrary init:sn key:key] is provided to initialize Foxit PDF SDK for iOS. The trial license files can be found in the “libs” folder of the download package. After the evaluation period expires, you should purchase an official license to continue using it. Finish the initialization in the didFinishLaunchingWithOptions method within the AppDelegate.m file.

#import "AppDelegate.h"

#import "FoxitRDK/FSPDFObjC.h"

@interface AppDelegate ()

@end

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // The value of "sn" can be found in the "rdk_sn.txt".

 // The value of "key" can be found in the "rdk_key.txt".

 NSString* sn = @" ";

 NSString* key = @" ";

 FS_ERRORCODE eRet = [FSLibrary init:sn key:key];

 if (e_errSuccess != eRet) {

 return NO;

 }

 return YES;

}

@end

Note: The parameter “sn” can be found in the “rdk_sn.txt” (the string after “SN=”) and the “key” can be found in the “rdk_key.txt” (the string after “Sign=”).

Display a PDF document using PDFViewCtrl

So far, we have added “FoxitRDK.framework” to the pdfreader project, and finished the initialization of the Foxit PDF SDK for iOS. Now, let’s start building a simple PDF viewer with just a few lines of code

Note: The UI Extensions Component is not required if you only want to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use “Sample.pdf” found in the “samples/test_files” folder of the download package. Right-click the pdfreader project, and select Add Files to “pdfreader”… to add this file. After adding, you can see the PDF in the Xcode’s Copy Bundle Resources as shown in Figure 3-9.

Note: You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

Figure 3-9

Then, add the following code to ViewController.m to display a PDF document. It’s really easy to present a PDF on screen. All you need is to get a PDF file and call [FSPDFViewCtrl openDoc:filePath password:password completion:completion] function to open and display the PDF.

Update ViewController.m as follows:

#import "ViewController.h"

#import "FoxitRDK/FSPDFViewControl.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a PDFDoc object with the path to the PDF file

 FSPDFDoc* pdfdoc = [FSPDFDoc createFromFilePath:pdfPath];

 if(e_errSuccess != [pdfdoc load:nil]) {

 return;

 }

 // Initialize a FSPDFViewCtrl object with the size of the entire screen

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Set the document to display

 [pdfViewCtrl setDoc:pdfdoc];

 // Add the pdfViewCtrl to the root view

 [self.view addSubview:pdfViewCtrl];

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Fantastic! We have now finished building a simple iOS app which uses Foxit PDF SDK for iOS to display a PDF document with just a few lines of code. The next step is to run the project on a device or simulator.

In this guide, we build and run the project on an iPhone 8 Simulator, and you will see that the “Sample.pdf” document is displayed as shown in Figure 3-10. Now, this sample app has some basic PDF features, such as zooming in/out and page turning. Just have a try!

Figure 3-10

Build a full-featured PDF Reader with UI Extensions Component

Foxit PDF SDK for iOS comes with built-in UI design including the basic UI for app and the feature modules UI, which are implemented using Foxit PDF SDK and are shipped in the UI Extensions Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to do is to add UI Extensions Component, and then instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl.

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the “ViewController.m” file, you only need to add the following code:

#import "../uiextensions/UIExtensionsManager.h"

UIExtensionsManager* extensionsManager;

...

extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone and photo library

To access the camera, microphone and photo library in iOS 9.0 or higher, you need to do the following configuration in the “Info.plist“.

NSCameraUsageDescription

 The App needs to access your Camera, please allow

NSMicrophoneUsageDescription

 The App needs to access your Microphone, please allow

NSPhotoLibraryAddUsageDescription

 The App needs to add pictures into your Photo Library, please allow

NSPhotoLibraryUsageDescription

 The App needs to access your Photo Library, please allow

The whole update of ViewController.m is as follows:

#import "ViewController.h"

#import "FoxitRDK/FSPDFViewControl.h"

#import "../uiextensions/UIExtensionsManager.h"

@interface ViewController ()

@end

@implementation ViewController

{

 UIExtensionsManager* extensionsManager;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"FoxitForm" ofType:@"pdf"];

 // Initialize a PDFDoc object with the path to the PDF file

 FSPDFDoc* pdfdoc = [FSPDFDoc createFromFilePath:pdfPath];

 if(e_errSuccess != [pdfdoc load:nil]) {

 return;

 }

 // Initialize a FSPDFViewCtrl object with the size of the entire screen

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Set the document to display

 [pdfViewCtrl setDoc:pdfdoc];

 // Add the pdfViewCtrl to the root view

 [self.view addSubview:pdfViewCtrl];

 // Initialize a UIExtensionsManager object and set it to pdfViewCtrl

 extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

 pdfViewCtrl.extensionsManager = extensionsManager;

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Let’s run it on an iPhone 8 Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-11, which includes all of the features in Complete PDF Viewer Demo. Feel free to try it.

Figure 3-11

Make an iOS app in Swift with Foxit PDF SDK for iOS

Nowadays, Swift is more and more popular for iOS developers because its syntax is much cleaner and easier to read. To better support Swift developers, this section will help you to quickly make an iOS app in Swift using Foxit PDF SDK. It includes the following steps:

	Create a new iOS project in Swift
	Integrate Foxit PDF SDK for iOS into your apps
	Initialize Foxit PDF SDK for iOS
	Display a PDF document using FSPDFViewCtrl
	Build a full-featured PDF Reader with UI Extensions Component

Create a new iOS project in Swift

In this guide, we use Xcode 9.1 to create a new iOS project.

To create a new iOS project in Swift, you can refer to section Create a new iOS project in Objective-C”. The only difference is that you should choose Swift as the programming language (See Figure 3-12).

Figure 3-12

Integrate Foxit PDF SDK for iOS into your apps

To integrate Foxit PDF SDK for iOS into your apps, please first refer to the previous “Integrate Foxit PDF SDK for iOS into your apps” section to add the dynamic framework “FoxitRDK.framework” and “uiextensionsDynamic.framework” into the pdfreader project.

Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling any APIs. The function FSLibrary inititialize is provided to initialize Foxit PDF SDK. The trial license files can be found in the “libs” folder of the download package. After the evaluation period expires, you should purchase an official license to continue using it. Finish the initialization in the application method within the AppDelegate.swift file.

import FoxitRDK

...

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let sn = ""

 let key = ""

 let eRet = FSLibrary.initialize(sn, key:key)

 if .errSuccess != eRet {

 return false

 }

 return true

}

Note: The parameter “sn” can be found in the “rdk_sn.txt” (the string after “SN=”) and the “key” can be found in the “rdk_key.txt” (the string after “Sign=”).

Display a PDF document using PDFViewCtrl

So far, we have added Foxit PDF SDK for iOS frameworks to the pdfreader project, and finished the initialization of the Foxit PDF SDK. Now, let’s start displaying a PDF document using FSPDFViewCtrl with just a few lines of code.

Note: The UI Extensions Component is not required if you only want to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use “Sample.pdf” found in the “samples\test_files” folder of the download package. Right-click the pdfreader project, and select Add Files to “pdfreader“… to add this file. After adding, you can see the PDF in the Xcode’s Copy Bundle Resources as shown in Figure 3-13.

Note: You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

Figure 3-13

Then, add the following code to ViewController.swift to display a PDF document. It’s really easy to present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call FSPDFViewCtrl::openDoc function to open and display the PDF.

Update ViewController.swift as follows:

import UIKit

import FoxitRDK

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Get the path of a PDF.

 let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 var pdfViewCtrl: FSPDFViewCtrl!

 pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

 // Set the document to display.

 pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

 // Add the pdfViewCtrl to the root view.

 self.view.insertSubview(pdfViewCtrl, at: 0)

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Fantastic! We have now finished building a simple iOS app in Swift which uses Foxit PDF SDK to display a PDF document with just a few lines of code. The next step is to run the project on a device or simulator.

In this guide, we build and run the project on an iPhone 8 Simulator, and you will see that the “Sample.pdf” document is displayed as shown in Figure 3-14. Now, this sample app has some basic PDF features, such as zooming in/out and page turning. Just have a try!

Figure 3-14

Build a full-featured PDF Reader with UIExtensions Component

Foxit PDF SDK for iOS comes with built-in UI design including the basic UI for app and the feature modules UI, which are implemented using Foxit PDF SDK and are shipped in the UI Extensions Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to do is to instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl.

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the “ViewController.swift” file, you only need to add the following code:

import uiextensionsDynamic

...

var extensionsManager: UIExtensionsManager!

...

extensionsManager = UIExtensionsManager(pdfViewControl: pdfViewCtrl)

pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone and photo library

To access the camera, microphone and photo library in iOS 9.0 or higher, you need to do the following configuration in the “Info.plist”.

<key>NSCameraUsageDescription</key>

<string>For adding photographs to your PDF files.</string>

<key>NSMicrophoneUsageDescription</key>

<string>RDK need to add record permissions,please allow</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>RDK need to add picture permissions,please allow</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>For adding pictures to your PDF files.</string>

The whole update of ViewController.swift is as follows:

import UIKit

import FoxitRDK

import uiextensionsDynamic

class ViewController: UIViewController {

 var extensionsManager: UIExtensionsManager!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Get the path of a PDF.

 let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 var pdfViewCtrl: FSPDFViewCtrl!

 pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

 // Set the document to display.

 pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

 // Add the pdfViewCtrl to the root view.

 self.view.insertSubview(pdfViewCtrl, at: 0)

 // Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

 extensionsManager = UIExtensionsManager(pdfViewControl: pdfViewCtrl)

 pdfViewCtrl.extensionsManager = extensionsManager;

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Let’s run it on an iPhone 8 Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-15, which includes all of the features in Complete PDF Viewer demo. Feel free to try it.

Figure 3-15

Customizing User Interface

Foxit PDF SDK for iOS provides a simple, clean and friendly user interface for developers to quickly build a full-featured PDF app without needing to take much time on the design. Furthermore, customizing the user interface is straightforward. Foxit PDF SDK for iOS provides the source code of the UI Extensions Component that contains ready-to-use UI module implementations, which lets the developers have full control of styling the appearance as desired.

From version 4.0, developers can flexibly customize the features they want through a configuration file.

From version 5.0, every element in the built-in UI can be configurable. More advanced APIs and more powerful configuration file are provided for developers to further customize the UI elements, such as showing or hiding a specific panel, top/bottom bar, the items in the top bar, and the items in the View setting bar and More Menu view.

From version 6.3, the configuration file has been enhanced which provides more optional settings to customize the UI including the rights management and the properties of UI elements.

The following section will introduce how to customize the feature modules in your project and how to customize the UI elements and implementations through a configuration file or APIs.

Customize the UI through a configuration file

Through a configuration file, developers can easily choose the features module, set the rights management and the properties of UI elements without needing to write any additional code or redesign the app’s UI.

Introduction to JSON file

The configuration file can be provided as a JSON file or implemented directly in code. We recommend you to use the JSON format which is more intuitive and clearer to view and configure the items.

You can refer to the JSON file found in “samples\complete_pdf_viewer\Source\Resource\” folder of Foxit PDF SDK for iOS package. It looks like as follows:

{

 "modules": {

 "readingbookmark": true,

 "outline": true,

 "annotations": {

 "highlight": true,

 "underline": true,

 "squiggly": true,

 "strikeout": true,

 "insert": true,

 "replace": true,

 "line": true,

 "rectangle": true,

 "oval": true,

 "arrow": true,

 "pencil": true,

 "eraser": true,

 "typewriter": true,

 "textbox": true,

 "callout": true,

 "note": true,

 "stamp": true,

 "polygon": true,

 "cloud": true,

 "polyline": true,

 "distance": true,

 "image": true,

 "audio": true,

 "video": true

 },

 "thumbnail": true,

 "attachment": true,

 "signature": true,

 "search": true,

 "navigation": true,

 "form": true,

 "selection": true,

 "encryption": true

 },

 "permissions": {

 "runJavaScript" : true,

 "copyText" : true,

 "disableLink" : false

 },

 "uiSettings": {

 "displayMode" : "Single",

 "colorMode" : "Normal",

 "zoomMode" : "FitWidth",

 "mapForegroundColor" : "#5d5b71",

 "mapBackgroundColor" : "#00001b",

 "disableFormNavigationBar" : false,

 "highlightForm" : true,

 "highlightLink" : true,

 "highlightLinkColor" : "#16007fff",

 "highlightFormColor":"#200066cc",

 "fullscreen" : false,

 "annotations": {

 "continuouslyAdd" : false,

 "highlight": {

 "color" : "#ffff00",

 "opacity" : 1.0

 },

 "underline": {

 "color" : "#66cc33",

 "opacity" : 1.0

 },

 "squiggly": {

 "color" : "#ff6633",

 "opacity" : 1.0

 },

 "strikeout": {

 "color" : "#ff0000",

 "opacity" : 1.0

 },

 "insert": {

 "color" : "#993399",

 "opacity" : 1.0

 },

 "replace": {

 "color" : "#0000ff",

 "opacity" : 1.0

 },

 "line": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "rectangle": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "oval": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "arrow": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "pencil": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "polygon": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "cloud": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "polyline": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "typewriter": {

 "textColor" : "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "textbox": {

 "color" : "#ff0000",

 "textColor": "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "callout": {

 "color": "#ff0000",

 "textColor": "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "note": {

 "color" : "#ff6633",

 "opacity" : 1.0,

 "icon" : "Comment"

 },

 "attachment": {

 "color" : "#ff6633",

 "opacity" : 1.0,

 "icon" : "Pushpin"

 },

 "image": {

 "rotation" : 0,

 "opacity" : 1.0

 },

 "distance": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2,

 "scaleFromUnit" : "inch",

 "scaleToUnit" : "inch",

 "scaleFromValue" : 1,

 "scaleToValue" : 1

 }

 },

 "signature": {

 "color" : "#000000",

 "thickness" : 4

 }

 }

}

Note:

1) The values in the above JSON file are the default settings for the configuration items. If some configuration items are not in the JSON file, the default settings will be used. For example, if you comment out “highlight”: true,”, it is still enabled.

2) Only the attachment annotation in the Annotation setting bar (See Figure 4-1, to find the Annotation setting bar, just click Comment at the bottom bar, and then click the three dots button) is not controlled by the subitems in “annotations”. “”attachment”: true,” controls the attachments panel and attachment annotation. If you set it to “false”, both of them will be disabled. If you want to hide “Comment” in the bottom bar, you should set both “annotations” and “attachment” to “false”.

Figure 4-1

The above picture does not display all of the annotation tools. You can swipe left on the setting bar to see the other annotation tools.

Configuration items description

The JSON configuration file includes three parts: feature modules, rights management, and UI settings (for example, UI elements properties). This section will set forth the configuration items in detail.

Configure feature module

Note: The value type of the feature module items is bool, where “true” means that the feature module will be enabled, and “false” means that the feature module will be disabled. The default value is “true”.

	Feature Module	Description
	readingbookmark	User-defined bookmark
	outline	PDF document bookmark
	annotations

(highlight, underline, squiggly, strikeout, insert, replace, line, rectangle, oval, arrow, pencil, eraser, typewriter, textbox, callout, note, stamp, polygon, cloud, polyline, distance, image, audio, video)	Annotation module collection
	thumbnail	PDF page thumbnail display and page management
	attachment	PDF document attachments
	signature	Digital signatures and handwritten signatures
	search	Text search
	navigation	PDF page navigation
	form	Form Filling and form data importing and exporting
	selection	Text selection
	encryption	PDF encryption
	multipleSelection	Multiple annotations selection

Configure rights management

Note: The value type of the configuration items is bool, where “true” means that the permission will be enabled, and “false” means that the permission will be disabled. The default value of runJavaScript and copyText is “true”, and the default value of disableLink is “false”.

	Rights Management	Description
	runJavaScript	whether to allow to execute JavaScript
	copyText	whether to allow to copy text
	disableLink	whether to disable hyperlink

Configure UI settings

	UI Items	Description/ Property Items	Value Type	Available Value/Note	Default value	Note
	displayMode	Page display mode	String	Single/

Continous/

Facing/

CoverLeft/

CoverMiddle/

CoverRight/

Reflow	Single	For iOS phone, it only supports Single/Continous/Reflow modes.

For dynamic XFA files, it doesn’t support Reflow mode.
	zoomMode	Page zoom mode	String	FitWidth/FitPage	FitWidth	
	colorMode	Page color display mode	String	Normal/Night/Map	Normal	“Night” is a special “Map” mode.
	mapForegroundColor	Foreground color of page display	RGB	—	#5d5b71	It is valid only when “colorMode” is set to “Map”.
	mapBackgroundColor	Background color of page dispay	RGB	—	#00001b	It is valid only when “colorMode” is set to “Map”.
	disableFormNavigationBar	Whether to disable the supplementary navigation bar of the form	Bool	true/false	false	
	highlightForm	Whether to highlight form field	Bool	true/false	true	
	highlightFormColor	The highlight color of forms	ARGB		#200066cc	It includes alpha channel, and it is invalid for dynamic XFA document.
	highlightLink	Whether to highlight hyperlink	Bool	true/false	true	
	highlightLinkColor	The highlight color of links	ARGB		#16007fff	It includes alpha channel.
	fullscreen	Whether to display in full-screen mode	Bool	true/false	false	It will be in full-screen mode immediately when opening a document if “fullscreen” is set to “true”.

If the user clicks on the page, the toolbar will be displayed. After 5 seconds, if it is in full-screen mode, the toolbar and other auxiliary tool buttons will be hidden automatically.
	annotations	continuously add		Bool	true/false	false	Whether to add annotation continuously
		highlight	color	RGB		#ffff00	
			opacity	numeric	[0.0-1.0]	1.0	
		underline	color	RGB		#66cc33	
			opacity	numeric	[0.0-1.0]	1.0	
		squiggly	color	RGB		#ff6633	
			opacity	numeric	[0.0-1.0]	1.0	
		strikeout	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
		insert	color	RGB		#993399	
			opacity	numeric	[0.0-1.0]	1.0	
		replace	color	RGB		#0000ff	
			opacity	numeric	[0.0-1.0]	1.0	
		line	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		rectangle	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		oval	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		arrow	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		pencil	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		polygon	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		cloud	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		polyline	color	RGB		#ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
		typewriter	textColor	RGB		#0000ff	
			opacity	numeric	[0.0-1.0]	1.0	
			textFace	String	Courier/

Courier-Bold/

Courier-BoldOblique/

Courier-Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-BoldOblique/

Helvetica-Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic	Courier	Text font name.

If set to an invalid value, the default value will be used.
			textSize	Integer	>=1	18	
		textbox	color	RGB		#ff0000	
			textColor	RGB		#0000ff	
			opacity	numeric	[0.0-1.0]	1.0	
			textFace	String	Courier/

Courier-Bold/

Courier-BoldOblique/

Courier-Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-BoldOblique/

Helvetica-Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic	Courier	Text font name.

If set to an invalid value, the default value will be used.
			textSize	Integer	>=1	18	
		callout	color	RGB		#ff0000	
			textColor	RGB		#0000ff	
			opacity	numeric	[0.0-1.0]	1.0	
			textFace	String	Courier/

Courier-Bold/

Courier-BoldOblique/

Courier-Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-BoldOblique/

Helvetica-Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic	Courier	Text font name.

If set to an invalid value, the default value will be used.
			textSize	Integer	>=1	18	
		note	color	RGB		#ff6633	
			opacity	numeric	[0.0-1.0]	1.0	
			icon	String	Comment/

Key/

Note/

Help/

NewParagraph/

Paragraph/

Insert	Comment	If set to an invalid value, the default value will be used.
		attachment	color	RGB		#ff6633	
			opacity	numeric	[0.0-1.0]	1.0	
			icon	String	Graph/

PushPin/

Paperclip/

Tag	PushPin	
		image	rotation	numeric	0/90/180/270	0	If set to an invalid value, the default value will be used.
			opacity	numeric	[0.0-1.0]	1.0	
		distance	color	RGB		ff0000	
			opacity	numeric	[0.0-1.0]	1.0	
			thickness	numeric	[1-12]	2	
			scaleFromUnit	String	pt/m/cm/mm/inch/p/ft/yd	inch	The original unit of the scale.

If set to an invalid value, the default value will be used.
			scaleToUnit	String	pt/m/cm/mm/inch/p/ft/yd	inch	The target unit of the scale.

If set to an invalid value, the default value will be used.
			scaleFromValue	numeric		1	The original value of the scale
			scaleToValue	numeric		1	The target value of the scale
	signature	color	RGB		#000000	
		thickness	numeric	[1-12]	4	z

Instantiate a UIExtensionsManager object with the configuration file

In the individual Objective-C and Swift sections, we have already introduced how to instantiate UIExtensionsManager, and in this way all the built-in UI framework would be loaded by default. In this section, we will provide another method to instantiate UIExtensionsManager that uses the configuration file, so that developers can easily customize the UI as desired.

Please refer to the following code to instantiate a UIExtensionsManager object with the configuration file.

Note: You should prepare the JSON configuration file, and then add it to your project. Here, we assume that you have already added a JSON file named “uiextensions_config.json”.

In ViewController.m: (Objective-C)

UIExtensionsManager* extensionsManager;

...

// Instantiate a FSPDFViewCtrl object with the size of the entire screen.

FSPDFViewCtrl* pdfViewCtrl;

pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Get the path of the JSON configuration file.

NSString* configPath = [[NSBundle mainBundle] pathForResource:@"uiextensions_config" ofType:@"json"];

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl configuration:[NSData dataWithContentsOfFile:configPath]];

if (nil == extensionsManager) {

 return;

}

pdfViewCtrl.extensionsManager = extensionsManager;

In ViewController.swift: (Swift)

var extensionsManager: UIExtensionsManager!

...

// Initialize a FSPDFViewCtrl object with the size of the entire screen

var pdfViewCtrl: FSPDFViewCtrl!

pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Get the path of the JSON configuration file.

let configPath = Bundle.main.path(forResource: "uiextensions_config", ofType: "json")

var data: Data?

if nil != configPath {

 data = NSData(contentsOfFile: configPath!) as Data?

}

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

extensionsManager = UIExtensionsManager.init(pdfViewControl: pdfViewCtrl, configuration: data)

if nil == extensionsMgr {

 return

}

pdfViewCtrl.extensionsManager = extensionsManager;

Note: Here, we use a configuration file to initialize the UIExtensionsManager. If you do not want to use the configuration file, please refer to the Objective-C and Swift versions.

Examples for customizing UI through a configuration file

In this section, we will show you how to customize feature modules, rights management and UI settings (for example, UI elements properties) in your project. You will find it is extremely easy! You only need to modify the configuration file. Below you can see some examples of how to do it.

Note: For your convenience, we will try it in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder.

Open the demos in Xcode. Find the configuration file “uiextensions_config.json” under “complete_pdf_viewer\Resource” or “complete_pdf_viewer_swift\Resource”.

Example 1: Disable “readingbookmark” and “navigation” feature modules.

In the JSON file, set the values of “readingbookmark” and “navigation” to “false” as follows:

"readingbookmark": true,

"navigation": true,

Then, rebuild and run the demo to see the result. Following lists the comparison diagrams:

Before

After

The “readingbookmark” and “navigation” feature modules are removed.

Example 2: Disable hyperlinks.

In the JSON file, set the value of “disableLink” to “true” as follows:

"permissions": {

 "runJavaScript": true,

 "copyText": true,

 "disableLink": true

},

Then, rebuild and run the demo to see the result, and you will find that there is no response when clicking the hyperlinks.

Example 3: Set the highlight color from yellow to red.

In the JSON file, set the color property of “highlight” to “#ff0000” as follows:

"highlight": {

 "color" : "#ff0000",

 "opacity" : 1.0

},

Then, rebuild and run the demo to see the result.

Customize UI elements through APIs

In version 4.0, Foxit PDF SDK for iOS supports customizing to show or hide the whole top or bottom bar, and from version 5.0, it provides APIs to customize to show or hide a specific panel, the items in the top bar, View setting bar and More Menu view, which is convenient for developers to modify the UI elements in the context of the built-in UI framework.

Note: For your convenience, we will show you how to customize UI elements through APIs in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder. We assume that you have not modified the “uiextensions_config.json” file in the demos, which means that all of the built-in UI in the UI Extensions Component is enabled.

Customizing the top/bottom bars

In the top/bottom bar (See Figure 42), you can do the following operations:

1) Show or hide the top/bottom bar.

2) Show or hide a specific item in the top toolbar.

Figure 4-2

Table 4-1 lists the related APIs which are used to customize the top/bottom bar

Table 4-1

[table id=14 /]

The value of the parameter “itemTag” in setTopToolbarItemHiddenWithTag interface can be set as follows, which maps the features in the top bar.

[table id=15 /]

In the following examples, we will show you how to customize the top/bottom bar through APIs in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder.

Open the demos in Xcode. Add the sample code to the “ViewController.m” (Objective-C) or “ViewController.swift” (Swift) (after the code that initializes UIExtensionsManager).

Example 1: Hide the whole top bar.

Objective-C:

[self.extensionsMgr enableTopToolbar:false];

Swift:

extensionsMgr.enableTopToolbar(false)

Before:

After:

Example 2: Hide the whole bottom bar.

Objective-C:

[self.extensionsMgr enableBottomToolbar:false];

Swift:

extensionsMgr.enableBottomToolbar(false)

Before:

After:

Example 3: Hide the more menu items button in the top bar.

Objective-C:

[self.extensionsMgr setTopToolbarItemHiddenWithTag:FS_TOPBAR_ITEM_MORE_TAG hidden:YES];

Swift:

extensionsMgr.setTopToolbarItemHiddenWithTag(UInt(FS_TOPBAR_ITEM_MORE_TAG), hidden: true)

Before:

After:

For other items in the top bar, you can refer to the above example, and just need to change the value of the parameter “itemTag” in setTopToolbarItemHiddenWithTag interface.

To show one of the UI elements in the top bar, just set the opposite value for “true” and “false” in the above examples.

Customizing to show/hide a specific Panel

To show or hide a specific panel (See Figure 4-3, includes “Reading Bookmarks”, “Outline”, “Annotations” and “Attachments” panels, just clicks List at the bottom bar to find it), you only need to use the following API:

(void)setPanelHidden:(BOOL)isHidden type:(FSPanelType)type

Figure 4-3

Note: To show or hide a specific panel through APIs, please mark sure the corresponding features in the configuration file is set to “true”. Otherwise, the API settings will not have any effect.

In this section, we only give an example to show you how to show or hide a specific panel through APIs in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder. Just take the “Outline” panel as an example, and for others panels, you only need to change the FSPanelType. The corresponding relation between panels and FSPanelType are as follows:

[table id=17 /]

Open the demos in Xcode. Add the sample code to the “ViewController.m” (Objective-C) or “ViewController.swift” (Swift) (after the code that initializes UIExtensionsManager).

Example: Hide the “Outline” panel.

Objective-C:

[self.extensionsMgr.panelController setPanelHidden:true type:FSPanelTypeOutline];

Swift:

extensionsMgr.panelController.setPanelHidden(true, type: .outline)

Before:

After:

For Reading Bookmarks, Annotations, and Attachments panels, you only need to change the FSPanelType. Just try it.

Customizing to show/hide the UI elements in the View setting bar

To show or hide the UI elements in the View setting bar (See Figure 4-4, just clicks View at the bottom bar to find it), you only need to use the following API:

(void)setItem:(SettingItemType)itemType hidden:(BOOL)hidden;

Figure 4-4

The value of the parameter “itemType” can be set as follows, which maps the items in the View setting bar.

[table id=18 /]

In this section, we only take “Reflow” item as an example to show you how to show or hide the UI elements in the View setting bar through APIs in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder. For other UI elements, you only need to change the “itemType“.

Open the demos in Xcode. Add the sample code to the “ViewController.m” (Objective-C) or “ViewController.swift” (Swift) (after the code that initializes UIExtensionsManager).

Example: Hide the “Reflow” item in the View setting bar.

Objective-C:

[self.extensionsMgr.settingBar setItem:REFLOW hidden:YES];

Swift:

extensionsMgr.settingBar.setItem(.REFLOW, hidden: true)

Before:

After:

For other items in the View setting bar, you can refer to the above example, and just need to change the value of the parameter “itemType” in setItem interface.

To show one of the UI elements in the View setting bar, just set the “hidden” to “false” in the above example.

Customizing to show/hide the UI elements in the More Menu view

To show or hide the UI elements in the More Menu view (See Figure 4-5, just click at the menu icon at the right top bar to find it), you can use the following APIs listed in the Table 4-2.

Table 4-2

[table id=19 /]

Figure 4-5

The value of the parameter “groupTag” in the setMoreViewItemHiddenWithGroup interface can be set as follows:

[table id=20 /]

[table id=21 /]

Note: If you want to show or hide an itemTag, please make sure the corresponding groupTag has not been hidden. Otherwise, the settings will not have any effect.

In this section, we only take “TAG_GROUP_FILE” (File in the view) and “TAG_ITEM_FILEINFO” (File Information in the view) as an example to show you how to show or hide the UI elements in the More Menu view through APIs in the “complete_pdf_viewer” (Objective-C) and “complete_pdf_viewer_swift” (Swift) demos found in the “samples” folder. For other UI elements, you can refer to the following examples and only need to change the parameter value in the setMoreViewItemHiddenWithGroup interfaces.

Open the demos in Xcode. Add the sample code to the “ViewController.m” (Objective-C) or “ViewController.swift” (Swift) (after the code that initializes UIExtensionsManager).

Example 1: Hide the “File” in the More Menu view.

Objective-C:

[self.extensionsMgr.more setMoreViewItemHiddenWithGroup:(TAG_GROUP_FILE) hidden:YES];

Swift:

self.extensionsMgr.more.setMoreViewItemHiddenWithGroup(UInt(TAG_GROUP_FILE), hidden: true)

Before:

After:

Example 2: Hide the “File Information” in the More Menu view.

Objective-C:

[self.extensionsMgr.more setMoreViewItemHiddenWithGroup:TAG_GROUP_FILE andItemTag:TAG_ITEM_FILEINFO hidden:YES];

Swift:

self.extensionsMgr.more.setMoreViewItemHiddenWithGroup(UInt(TAG_GROUP_FILE), andItemTag: UInt(TAG_ITEM_FILEINFO), hidden: true)

Before:

After:

For other items in the More Menu view, you can refer to the above examples, and just need to change the parameter value in the setMoreViewItemHiddenWithGroup interfaces.

To show one of the UI elements in the More Menu view, just set the “hidden” to “false” in the above examples.

Customize UI implementation through the source code

In the previous sections, we have introduced how to customize the UI elements through APIs or configuration file in detail. Those changes are in the context of the built-in UI framework of Foxit PDF SDK for iOS. If you do not want to use the ready-made UI framework, you can redesign it through modifying the source code of the UI Extensions Component.

There is one thing to take note of. The source code of the UI Extensions Component is written in Objective-C, so you need to use Objective-C to modify the UI layout. If you are a Swift developer and not already familiar with Objective-C, you might only be able to customize the UI appearance that does not need writing code, such as icons and other UI resources.

To customize the UI implementation, you need to follow these steps:

First, add the following files into your app.

	FoxitRDK.framework – The framework that includes the Foxit PDF SDK for iOS dynamic library and associated header files. It can be found in the “libs” folder.
	uiextensions project – It is an open source library that contains some ready-to-use UI module implementations, which can help developers rapidly embed a fully functional PDF reader into their iOS app. Of course, developers are not forced to use the default UI, they can freely customize and design the UI for their specific apps through the “uiextensions” project. It can be found in the “libs/uiextensions_src” folder.Tip: The built-in UI customization can be done in the uiextensions project, and then you can add the new uiextensionsDynamic.framework generated by the modified uiextensions project to your app instead of the whole uiextensions project.

Second, find the specific code or images related to the UI that you want to customize in the uiextensions project, then modify them based on your requirements.

Now, for your convenience, we will show you how to customize the UI implementation in the “viewer_ctrl_demo” project found in the “samples” folder.

UI Customization Example

Step 1: Add the uiextensions project into the demo.

Note: We will add the uiextensions project to the demo which is convenient for us to see the custom results. The demo already includes FoxitRDK.framework, so we just need to add the uiextensions project.

Load the “viewer_ctrl_demo” in XCode. Drag-and-drop “uiextensions.xcodeproj” found in the “libs/uiextensions_src” of the download package into the “viewer_ctrl_demo” project as shown in Figure 4-6.

Figure 4-6

Then, it will pop up a dialog box which prompts you whether to save the project in a new workspace as shown in Figure 4-7. Click Save.

Figure 4-7

Save the workspace to the “samples” folder, and name “custom_viewer” as shown in Figure 4-8. Click Save.

Figure 4-8

Now, the workspace looks like the Figure 4-9.

Figure 4-9

Congratulations! You have completed the first step

Step 2: Find and modify the code or images related to the UI that you want to customize.

Now we will show you a simple example that changes one button’s icon in the search panel as shown in Figure 4-10.

Tip: If you just want to change the icons of the UI elements, you can do it in the uiextensionsDynamic.framework directly instead of importing the source code of uiextensions project. But the same is that you also need to find the icon’s name.

Figure 4-10

To replace the icon we only need to find the place which stores the icon for this button, then use another icon with the same name to replace it.

Note: Foxit PDF SDK for iOS provides three sets of icons for different devices to make sure that your apps can run smoothly on every device. There are three folders used to store the image resources as follows:

	Image: used for older devices with non-Retina display (e.g. iPad 2).
	Image2x: used for iPhone 4/4s/5/5s/6/6s/7/7s/8.
	Image3x: used for iPhone 6/6s/7/7s/8 Plus and iPhone X, which has the highest resolution.

An iPhone 8 Simulator will be used as an example to run the demo. In the uiextensions project, click “uiextensionsDynamic -> Resource -> png -> image2x -> Search” as shown in Figure 4-11. It’s easy to find the image that we want to replace. The resource files are stored according to the features, so you can locate the related code through the icon’s name.

Figure 4-11

Right now, just replace “” with your own icon in the “libs/uiextensions_src/uiextensions/Resource/png/image2x” folder. For example, we use the icon of the top search button () to replace it.

After replacing, firstly build and run the uiextensionsDynamic_aggregate project as shown in Figure 4-12.

Figure 4-12

Note: The uiextensions project can generate a universal “.a” library through building uiextensions_aggregate, or generate a universal framework through building uiextensionsDynamic_aggregate, which can be used for both simulator and iOS device. In this section, we build uiextensionsDynamic_aggregate. The scripts used for generating the universal framework in the uiextension project is shown in Figure 4-12.

The uiextensionsDynamic.framework in the “libs” folder of the download package will be overwritten after building the uiextensionsDynamic_aggregate project successfully.

Then build and run the “viewer_ctrl_demo” project. After building successfully, try the search feature and we can see that the icon of the bottom search button has changed as shown in Figure 4-13.

Figure 4-13

This is just a simple example to show how to customize the UI implementation. You can refer to it and feel free to customize and design the UI for your specific apps through the uiextensions project.

Working with SDK API

Foxit PDF SDK for iOS wrapped all of the feature implementations into the UI Extensions Component. If you are interested in the detailed process of the features implementations, please go through this section.

In this section, we will introduce a set of major features and list some examples to show you how to implement the features using Foxit PDF SDK Core API.

Render

PDF rendering is realized through the Foxit renderer, a graphic engine that is used to render page to a bitmap or a platform device context. Foxit PDF SDK provides APIs to set rendering options/flags, for example set flag to decide whether to render form fields and signature, whether to draw image anti-aliasing and path anti-aliasing. To do rendering, you can use the following APIs:

	To render page and annotations, first use function FSRenderer::setRenderContentFlags to decide whether to render page and annotation both or not, and then use function FSRenderer::startRender to do the rendering. Function FSRenderer::startQuickRender can also be used to render page but only for thumbnail purpose.
	To render a single annotation, use function FSRenderer::renderAnnot.
	To render on a bitmap, use function FSRenderer::startRenderBitmap.
	To render a reflowed page, use function FSRenderer::startRenderReflowPage.

Widget annotation is always associated with form field and form control in Foxit PDF SDK. For how to render widget annotations, here is a recommended flow:

	After loading a PDF page, first render the page and all annotations in this page (including widget annotations).
	Then, if use FSFiller object to fill the form, the function FSFiller::render should be used to render the focused form control instead of the function FSRenderer::renderAnnot.

Example: How to render a specified page to a bitmap

#import "ViewController.h"

#import

...

-(FSBitmap*)renderPageToBitmap:(FSPDFPage*) pdfPage drawWidth:(int)drawPageWidth drawHeight:(int)drawPageHeight

{

 // If the page hasn't been parsed yet, throw an exception.

 if(![pdfPage isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed first" userInfo:nil];

 // Pepare matrix to render on the bitmap.

 FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight rotate:FSRotation0];

 // Create a bitmap according to the required drawPageWidth and drawPageHeight.

 FSBitmap* bitmap = [[FSBitmap alloc] initWithWidth:drawPageWidth height:drawPageHeight format:FSBitmapDIBRgb];

 // Fill the bitmap with white color.

 [bitmap fillRect:0xFFFFFFFF rect:nil];

 FSRenderer* renderer = [[FSRenderer alloc] initWithBitmap:bitmap is_rgb_order:YES];

 // Set the render flag, both page content and annotation will be rendered.

 [renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];

 // Start to render the page progressively.

 FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while (state == FSProgressiveToBeContinued) {

 state = [progress resume];

 }

 if(state != FSProgressiveFinished)

 return nil;

 }

 return bitmap;

}

How to render a specified page to a platform device context

#import "ViewController.h"

#import

...

-(void)renderPageToContext:(FSPDFPage*) pdfPage context:(CGContextRef)context

{

 // If the page hasn't been parsed yet, throw an exception.

 if(![pdfPage isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed first" userInfo:nil];

 // We set the width of drawing page to be equal to screen width, the drawing page height is calculated according to the ratio of page height and width.

 CGFloat scale = [UIScreen mainScreen].scale;

 int drawPageWidth = (int)[[UIScreen mainScreen] bounds].size.width * scale;

 float pageWidth = [pdfPage getWidth];

 float pageHeight = [pdfPage getHeight];

 int drawPageHeight = (int)drawPageWidth * (pageHeight/pageWidth) * scale;

 // Erase the background of context with white color.

 CGContextSaveGState(context);

 CGContextSetRGBFillColor(context, 1.0, 1.0, 1.0, 1.0);

 CGContextFillRect(context, CGRectMake(0, 0, drawPageWidth, drawPageHeight));

 // Render to screen in the device coordinate, left:0, top:0, right:drawPageWidth, bottom:drawPageHeight.

 FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight rotate:FSRotation0];

 FSRenderer* renderer = [[FSRenderer alloc] initWithContext:context device_type:FSRendererDeviceDisplay];

 [renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];

 // Start to render the page progressively.

 FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while (state == FSProgressiveToBeContinued) {

 state = [progress resume];

 }

 }

 CGContextRestoreGState(context);

}

Text Page

Foxit PDF SDK provides APIs to extract, select, search and retrieve text in PDF documents. PDF text contents are stored in FSTextPage objects which are related to a specific page. FSTextPage class can be used to retrieve information about text in a PDF page, such as single character, single word, text content within specified character range or rectangle and so on. It also can be used to construct objects of other text related classes to do more operations for text contents or access specified information from text contents:

	To search text in text contents of a PDF page, construct a FSTextSearch object with FSTextPage
	To access text such like hypertext link, construct a FSPageTextLinks object with FSTextPage
	To highlight the selected text on the PDF page, construct a FSTextPage object for calculating text area by selection.

Example: How to get the text area on a page by selection

#import "ViewController.h"

#import

...

// Get the text area on a page by selection. The starting selection position and ending selection position are specified by startPos and endPos.

-(NSArray*)getTextRectsBySelection:(FSPDFPage*)page startPos:(FSPointF*)startPos endPos:(FSPointF*)endPos {

 if(![page isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed first" userInfo:nil];

 // Create a text page from the parsed PDF page.

 FSTextPage* textPage = [[FSTextPage alloc] initWithPage:page flags:FSTextPageParseTextNormal];

 if(!textPage || [textPage isEmpty])

 return nil;

 int startCharIndex = [textPage getIndexAtPos:startPos.x y:startPos.y tolerance:5];

 int endCharIndex = [textPage getIndexAtPos:endPos.x y:endPos.y tolerance:5];

 // API getTextRectCount requires that start character index must be lower than or equal to end character index.

 startCharIndex = startCharIndexstartCharIndex?endCharIndex:startCharIndex;

 int count = [textPage getTextRectCount:startCharIndex count:endCharIndex-startCharIndex];

 if(count)

 {

 NSMutableArray* array = [[NSMutableArray alloc] init];

 for(int i=0; iif(!rect || [rect isEmpty])

 continue;

 [array addObject:rect];

 }

 // The return rects are in PDF unit, if caller need to highlight the text rects on the screen, then these rects should be converted in device unit first.

 return array;

 }

 return nil;

}

...

Text Search

Foxit PDF SDK provides APIs to search text in a PDF document, a XFA document, a text page or in a PDF annotation’s appearance. It offers functions to do a text search and get the searching result:

	To specify the searching pattern and options, use functions FSTextSearch::setPattern, FSTextSearch::setStartPage (only useful for a text search in PDF document), FSTextSearch::setEndPage (only useful for a text search in PDF document) and FSTextSearch::setSearchFlags.
	To do the searching, use function FSTextSearch::findNext or FSTextSearch::findPrev.
	To get the searching result, use function FSTextSearch::getMatchXXX().

Example: How to search a text pattern in a PDF

#import "ViewController.h"

#import

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Create a text search handler for searching in PDF document.

FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:doc cancel:nil];

// Set the start page index which searching will begin. By default, end page will be the last page.

[textSearch setStartPage:0];

// Set the text to be searched.

[textSearch setPattern:@"foxit"];

// Set the search flags to be matching case and matching whole word.

[textSearch setSearchFlags:FSTextSearchSearchMatchCase|FSTextSearchSearchMatchWholeWord];

// Start to search from the start page to end.

while([textSearch findNext]) {

 // If true, then we found a matched result.

 // Get the found page index.

 int pageIndx = [textSearch getMatchPageIndex];

 // Get the start character index of the matched text on the found page.

 int startCharIndex = [textSearch getMatchStartCharIndex];

 // Get the end character index of the matched text on the found page.

 int endCharIndex = [textSearch getMatchEndCharIndex];

 // Get the rectangular region of the matched text on the found page.

 FSRectFArray* matchRects = [textSearch getMatchRects];

 }

}

...

Bookmark (Outline)

Foxit PDF SDK provides navigational tools called Bookmarks to allow users to quickly locate and link their point of interest within a PDF document. PDF bookmark is also called outline, and each bookmark contains a destination or actions to describe where it links to. It is a tree-structured hierarchy, so function FSPDFDoc::getRootBookmark must be called first to get the root of the whole bookmark tree before accessing to the bookmark tree. Here, “root bookmark” is an abstract object which can only have some child bookmarks without next sibling bookmarks and any data (includes bookmark data, destination data, and action data). It cannot be shown on the application UI since it has no data. Therefore, a root bookmark can only call function FSBookmark::getFirstChild.

After the root bookmark is retrieved, the following functions can be called to access other bookmarks:

	To access the parent bookmark, use function FSBookmark::getParent.
	To access the first child bookmark, use function FSBookmark::getFirstChild.
	To access the next sibling bookmark, use function FSBookmark::getNextSibling.
	To insert a new bookmark, use function FSBookmark::insert.
	To move a bookmark, use function FSBookmark::moveTo.

Example: How to travel the bookmarks of a PDF in depth first order

#import "ViewController.h"

#import

...

- (void)DepthFistTravelBookmarkTree:(FSBookmark*)bookmark document:(FSPDFDoc*)doc {

 if(!bookmark || [bookmark isEmpty])

 return;

 [self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];

 while(true) {

 // Get bookmark title.

 NSString* title = [bookmark getTitle];

 FSDestination* dest = [bookmark getDestination];

 if(dest && ![dest isEmpty])

 {

 float left,right,top,bottom;

 float zoom;

 int pageIndex = [dest getPageIndex:doc];

 // left, right, top, bottom, zoom are only meaningful with some special zoom modes.

 FSDestinationZoomMode mode = [dest getZoomMode];

 switch (mode) {

 case FSDestinationZoomXYZ:

 left = [dest getLeft];

 top = [dest getTop];

 zoom = [dest getZoomFactor];

 break;

 case FSDestinationZoomFitPage:

 break;

 case FSDestinationZoomFitHorz:

 top = [dest getTop];

 break;

 case FSDestinationZoomFitVert:

 left = [dest getLeft];

 break;

 case FSDestinationZoomFitRect:

 left = [dest getLeft];

 bottom = [dest getBottom];

 right = [dest getRight];

 top = [dest getTop];

 break;

 case FSDestinationZoomFitBBox:

 break;

 case FSDestinationZoomFitBHorz:

 top = [dest getTop];

 break;

 case FSDestinationZoomFitBVert:

 left = [dest getLeft];

 break;

 default:

 break;

 }

 }

 bookmark = [bookmark getNextSibling];

 if(bookmark == nil || [bookmark isEmpty])

 break;

 [self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];

 }

}

Reading Bookmark

Reading bookmark is not a PDF bookmark, in other words, it is not PDF outlines. It is the bookmark in applicable level. It is stored in the metadata (XML format) of catalog. It allows the user to add or remove a reading bookmark according to their reading preferences and navigate one PDF page easily by selecting one reading bookmark.

In order to retrieve the reading bookmark, function FSPDFDoc::getReadingBookmarkCount could be called to count the reading bookmarks, and function FSPDFDoc::getReadingBookmark could be called to get a reading bookmark by index.

This class offers several functions to get/set properties of reading bookmarks, such as title, destination page index and creation/modified date time.

How to add a custom reading bookmark and enumerate all the reading bookmarks

#import "ViewController.h"

#import

...

// Add a new reading bookmark to pdf document, the returned bookmark stores the title and the page index.

- (FSReadingBookmark*)addReadingBookmark:(FSPDFDoc*)pdfDoc title:(NSString*)title pageIndex:(int)pageIndex {

 int count = [pdfDoc getReadingBookmarkCount];

 return [pdfDoc insertReadingBookmark:count title:title dest_page_index:pageIndex];

}

// Enumerate all the reading bookmarks from the pdf document.

- (void)getReadingBookmark:(FSPDFDoc*) pdfDoc {

 int count = [pdfDoc getReadingBookmarkCount];

 for(int i=0; iif([bm isEmpty]) continue;

 // Get bookmark title.

 NSString* title = [bm getTitle];

 // Get the page index which associated with the bookmark.

 int pageIndex = [bm getPageIndex];

 // Get the creation date of the bookmark.

 FSDateTime* creationDate = [bm getDateTime:YES];

 // Get the modification date of the bookmark.

 FSDateTime* modificationDate = [bm getDateTime:NO];

 }

}

Attachment

In Foxit PDF SDK, attachments are only referred to attachments of documents rather than file attachment annotation, which allow whole files to be encapsulated in a document, much like email attachments. PDF SDK provides applications APIs to access attachments such as loading attachments, getting attachments, inserting/removing attachments, and accessing properties of attachments.

Example: How to embed a specified file to a PDF document

#import "ViewController.h"

#import

...

NSString* filePath = @"/xxx/fileToBeEmbedded.xxx";

FSPDFNameTree* nameTree = [[FSPDFNameTree alloc] initWithDocument:self.fspdfdoc type:FSPDFNameTreeEmbeddedFiles];

FSAttachments* attachments = [[FSAttachments alloc] initWithDoc:self.fspdfdoc nametree:nameTree];

FSFileSpec* fileSpec = [[FSFileSpec alloc] initWithDocument:self.fspdfdoc];

[fileSpec setFileName:[filePath lastPathComponent]];

if(![fileSpec embed:filePath])

 return;

[attachments addEmbeddedFile:[filePath lastPathComponent] file_spec:fileSpec];

...

Example: how to export the embedded attachment file from a PDF and save it as a single file

#import "ViewController.h"

#import

...

// Extract the embedded attachment file.

int count = [attachments getCount];

for(int i=0; iif(key) {

 FSFileSpec* fileSpec = [attachments getEmbeddedFile:key];

 NSString* exportedFile = [@"/somewhere/" stringByAppendingString: [fileSpec getFileName]];

 if(fileSpec && ![fileSpec isEmpty]) {

 fileSpec exportToFile:exportedFile];

 }

 }

}

...

Annotation

An annotation associates an object such as note, line, and highlight with a location on a page of a PDF document. PDF includes a wide variety of standard annotation types as listed in Foxit PDF SDK supports most annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of annotation creation, properties access and modification, appearance setting and drawing.

Table 5-1. Among these annotation types, many of them are defined as markup annotations for they are used primarily to mark up PDF documents. The ‘Markup’ column in Foxit PDF SDK supports most annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of annotation creation, properties access and modification, appearance setting and drawing.

Table 5-1 shows whether an annotation is a markup annotation.

Foxit PDF SDK supports most annotation types defined in PDF Reference. PDF SDK provides APIs of annotation creation, properties access and modification, appearance setting and drawing.

Table 5-1

	Annotation type	Description	Markup	Supported by SDK
	Text(Note)	Text annotation	Yes	Yes
	Link	Link Annotation	No	Yes
	FreeText

(TypeWriter/TextBox/Callout)	Free text annotation	Yes	Yes
	Line	Line annotation	Yes	Yes
	Square	Square annotation	Yes	Yes
	Circle	Circle annotation	Yes	Yes
	Polygon	Polygon annotation	Yes	Yes
	PolyLine	PolyLine annotation	Yes	Yes
	Highlight	Highlight annotation	Yes	Yes
	Underline	Underline annotation	Yes	Yes
	Squiggly	Squiggly annotation	Yes	Yes
	StrikeOut	StrikeOut annotation	Yes	Yes
	Stamp	Stamp annotation	Yes	Yes
	Caret	Caret annotation	Yes	Yes
	Ink(pencil)	Ink annotation	Yes	Yes
	Popup	Popup annotation	No	Yes
	File Attachment	FileAttachment annotation	Yes	Yes
	Sound	Sound annotation	Yes	No
	Movie	Movie annotation	No	No
	Widget*	Widget annotation	No	Yes
	Screen	Screen annotation	No	Yes
	PrinterMark	PrinterMark annotation	No	No
	TrapNet	Trap network annotation	No	No
	Watermark*	Watermark annotation	No	No
	3D	3D annotation	No	No
	Redact	Redact annotation	Yes	Yes

Note: Foxit SDK supports a customized annotation type called PSI (pressure sensitive ink) annotation that is not described in PDF reference. Usually, PSI is for handwriting features and Foxit SDK treats it as PSI annotation so that it can be handled by other PDF products.

Example: How to add annotations to a PDF page

#import "ViewController.h"

#import

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

FSPDFPage *pdfPage = [doc getPage:0];

// Add text annot.

FSRectF *rect = [[FSRectF alloc] initWithLeft1:100 bottom1:100 right1:120 top1:120];

FSNote *note = [[FSNote alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotNote rect:rect]];

if (!note || [note isEmpty]) {

 return;

}

[note setIconName:@"Comment"];

// Set color to blue.

[note setBorderColor:0xff0000ff];

[note setContent:@"This is the note comment, write any content here."];

[note resetAppearanceStream];

// The following code demonstrates how to add hightlight annotation on the searched text.

FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:[pdfPage getDocument] cancel:nil];

if (!textSearch || [textSearch isEmpty]) {

 return;

}

// Suppose that the text for highlighting is "foxit".

[textSearch setPattern:@"foxit"];

BOOL bMatched = [textSearch findNext];

if (bMatched) {

 FSRectFArray *rects = [textSearch getMatchRects];

 int rectCount = [rects getSize];

 // Fill the quadpoints array according to the text rects of matched result.

 FSQuadPointsArray* arrayOfQuadPoints = [[FSQuadPointsArray alloc] init];

 for (int i = 0; i < rectCount; i++) {

 FSRectF *rect = [rects getAt:i];

 FSQuadPoints *quadPoints = [[FSQuadPoints alloc] init];

 FSPointF *point = [[FSPointF alloc] init];

 [point set:[rect getLeft] y:[rect getTop]];

 [quadPoints setFirst:point];

 [point set:[rect getRight] y:[rect getTop]];

 [quadPoints setSecond:point];

 [point set:[rect getLeft] y:[rect getBottom]];

 [quadPoints setThird:point];

 [point set:[rect getRight] y:[rect getBottom]];

 [quadPoints setFourth:point];

 [arrayOfQuadPoints add:quadPoints];

 }

 // Just set an empty rect to markup annotation, the annotation rect will be calculated according to the quadpoints that set to it later

 FSRectF *rect = [[FSRectF alloc] initWithLeft1:0 bottom1:0 right1:0 top1:0];

 FSTextMarkup *textMarkup = [[FSTextMarkup alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotHighlight rect:rect]];

 // Set the quadpoints to this markup annot.

 [textMarkup setQuadPoints:arrayOfQuadPoints];

 // set to red.

 [textMarkup setBorderColor:0xffff0000];

 // set to thirty-percent opacity.

 [textMarkup setOpacity:0.3f];

 // Generate the appearance.

 [textMarkup resetAppearanceStream];

}

Example: how to delete annotations in a PDF page

#import "ViewController.h"

#import

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

FSPDFPage *pdfPage = [doc getPage:0];

// Remove an annot by index.

FSAnnot* annot = [pdfPage getAnnot:0];

if(!annot || [annot isEmpty])

 return;

// Remove the first annot,so the second annot will become first.

[pdfPage removeAnnot:annot];

Form

Form (AcroForm) is a collection of fields for gathering information interactively from the user. Foxit PDF SDK provides APIs to view and edit form field programmatically. Form fields are commonly used in PDF documents to gather data. The FSForm class offers functions to retrieve form fields or form controls, import/export form data and other features, for example:

	To retrieve form fields, please use functions FSForm::getFieldCount and FSForm::getField.
	To retrieve form controls from a PDF page, please use functions FSForm::getControlCount and FSForm::getControl.
	To import form data from an XML file, please use function FSForm::importFromXML; to export form data to an XML file, please use function FSForm::exportToXML.
	To retrieve form filler object, please use function FSForm::getFormFiller.

To import form data from a FDF/XFDF file or export such data to a FDF/XFDF file, please refer to functions FSPDFDoc::importFromFDF and FSPDFDoc::exportToFDF.

Example: How to import and export form data from or to a XML file

#import "ViewController.h"

#import

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Check if the document has a form.

BOOL hasForm = [doc hasForm];

if(hasForm) {

 // Create a form object from document.

 FSForm* form = [[FSForm alloc] initWithDocument:doc];

 // Export the form data to a XML file.

 [form exportToXML:@"/somewhere/export.xml"];

 // Or import the form data from a XML file.

 [form importFromXML:@"/somewhere/export.xml"];

}

Security

Foxit PDF SDK provides a range of encryption and decryption functions to meet different level of document security protection. Users can use regular password encryption and certificate-driven encryption, or using their own security handler for custom security implementation.

Example: how to encrypt a PDF file with password

#import "ViewController.h"

#import

...

// Encrypt the source pdf document with specified owner password and user password, the encrypted PDF will be saved to the path specified by parameter savePath.

- (BOOL) encryptPDF:(FSPDFDoc*) pdfDoc ownerPassword:(NSString*)ownerPassword userPassword:(NSString*)userPassword savedPath:(NSString*)savedPath

{

 if(!pdfDoc || (!ownerPassword && !userPassword) || !savedPath)

 return NO;

 // The encryption setting data. Whether to encrypt meta data:YES, User permission: modify,assemble,fill form. Cipher algorithm:AES 128.

 FSStdEncryptData* encryptData = [[FSStdEncryptData alloc] initWithIs_encrypt_metadata:YES user_permissions:(FSPDFDocPermModify| FSPDFDocPermAssemble|FSPDFDocPermFillForm) cipher:FSSecurityHandlerCipherAES key_length:16];

 FSStdSecurityHandler * stdSecurity = [[FSStdSecurityHandler alloc] init];

 if(![stdSecurity initialize:encryptData user_password:userPassword owner_password:ownerPassword])

 return NO;

 [pdfDoc setSecurityHandler:stdSecurity];

 if(![pdfDoc saveAs:savedPath save_flags:FSPDFDocSaveFlagNormal])

 return NO;

 return YES;

}

Signature

PDF Signature can be used to create and sign digital signatures for PDF documents, which protects the security of documents’ contents and avoids it to be tampered maliciously. It can let the receiver make sure that the document is released by the signer and the contents of the document are complete and unchanged. Foxit PDF SDK provides APIs to create digital signature, verify the validity of signature, delete existing digital signature, get and set properties of digital signature, display signature and customize the appearance of the signature form fields.

Note: Foxit PDF SDK provides default Signature callbacks which supports the following two types of signature filter and subfilter:

(1) filter: Adobe.PPKLite – subfilter: adbe.pkcs7.detached

(2) filter: Adobe.PPKLite – subfilter: adbe.pkcs7.sha1

If you use one of the above signature filter and subfilter, you can sign a PDF document and verify the validity of signature by default without needing to register a custom callback.

Example: How to sign a PDF document and verify the signature

#import "ViewController.h"

#import

...

- (void)addNewSignatureAndSign:(FSPDFPage*)page rect:(FSRectF*)rect {

 // Add a new signature on the specified page rect.

 FSSignature* signature = [page addSignature:rect];

 // Set the appearance flags, if the specified flag is on, then the associated key will be displayed on the signature appearance.

 [signature setAppearanceFlags:FSSignatureAPFlagLabel|FSSignatureAPFlagDN|FSSignatureAPFlagText|

 FSSignatureAPFlagLocation|FSSignatureAPFlagReason|FSSignatureAPFlagSigner];

 // Set signer.

 [signature setKeyValue:FSSignatureKeyNameSigner value:@"Foxit"];

 // Set location.

 [signature setKeyValue:FSSignatureKeyNameLocation value:@"AnyWhere"];

 // Set reason.

 [signature setKeyValue:FSSignatureKeyNameReason value:@"AnyReason"];

 // Set contact info.

 [signature setKeyValue:FSSignatureKeyNameContactInfo value:@"AnyInfo"];

 // Set domain name.

 [signature setKeyValue:FSSignatureKeyNameDN value:@"AnyDN"];

 // Set description.

 [signature setKeyValue:FSSignatureKeyNameText value:@"AnyContent"];

 // Filter "Adobe.PPKLite" is supported by default.

 [signature setFilter:@"Adobe.PPKLite"];

 // SubFilter "adbe.pkcs7.sha1" or "adbe.pkcs7.detached" are supported by default.

 [signature setSubFilter:@"adbe.pkcs7.detached"];

 // The input PKCS#12 format certificate, which contains the public and private keys.

 NSString* certPath = @"/somewhere/cert.pfx";

 // Password for that certificate.

 NSString* certPassword = @"123";

 NSString* signedPDFPath = @"/somewhere/signed.pdf";

 // Start to sign the signature, if everything goes well, the signed PDF will be saved to the path specified by "save_path".

 FSProgressive* progress = [signature startSign:certPath cert_password:certPassword digest_algorithm:FSSignatureDigestSHA1 save_path:signedPDFPath client_data:nil pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while(state == FSProgressiveToBeContinued)

 state = [progress resume];

 if(state != FSProgressiveFinished)

 return;

 }

 // Get the signatures from the signed PDF document, then verify them all.

 FSPDFDoc* pdfDoc = [[FSPDFDoc alloc] initWithPath:signedPDFPath];

 FSErrorCode err = [pdfDoc load:nil];

 if(err != FSErrSuccess) return;

 int count = [pdfDoc getSignatureCount];

 for(int i=0; iif(signature) {

 FSProgressive *progress = [signature startVerify:nil pause:nil];

 if (progress != nil) {

 FSProgressiveState state = [progress resume];

 while (FSProgressiveToBeContinued == state) {

 state = [progress resume];

 }

 if(state != FSProgressiveFinished)

 continue;

 }

 int verifiedState = [signature getState];

 if(verifiedState & FSSignatureStateVerifyValid)

 NSLog(@"Signature %d is valid.", i);

 }

 }

}

Creating a Custom Tool

With Foxit PDF SDK for iOS, creating a custom tool is a simple process. There are several tools implemented in the UI Extensions Component already. These tools can be used as a base for developers to build upon or use as a reference to create a new tool. In order to create your own tool quickly, we suggest you take a look at the uiextension project found in the “libs” folder.

To create a new tool, the most important step is to declare a class that implements the “IToolHandler” interface.

In this section, we will make a Regional Screenshot Tool to show how to create a custom tool with Foxit PDF SDK for iOS. This tool can help the users who only want to select an area in a PDF page to capture, and then save it as an image. Now, let’s do it.

Create a Regional Screenshot Tool in Objective-C

For convenience, we will build this tool based on the “viewer_ctrl_demo” project found in the “samples” folder. Steps required for implementing this tool are as follows:

	Create a class named ScreenCaptureToolHandler that implements the “IToolHandler” interface.
	Handle onPageViewLongPress and onDraw events.
	Instantiate a ScreenCaptureToolHandler object, and then register it to the extensions manager.
	Set the ScreenCaptureToolHandler object as the current tool handler

Step 1: Create a class named ScreenCaptureToolHandler that implements the “IToolHandler” interface.

a) Load the “viewer_ctrl_demo” project in Xcode. Create a class named “ScreenCaptureToolHandler” in the “Source” folder, and create the corresponding header file.

b) Let the ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

 @interface ScreenCaptureToolHandler : NSObject<IToolHandler>

Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.h as follows:

#import <Foundation/Foundation.h>

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/UIExtensionsManager.h>

@protocol IToolHandler;

@class TaskServer;

@interface ScreenCaptureToolHandler : NSObject<IToolHandler>

- (instancetype)initWithUIExtensionsManager:(UIExtensionsManager*)extensionsManager taskServer:(TaskServer*)taskServer;

@end

Update ScreenCaptureToolHandler.h as follows:

#import "ScreenCaptureToolHandler.h"

#import <ImageIO/ImageIO.h>

#import <ImageIO/CGImageDestination.h>

#import <MobileCoreServices/UTCoreTypes.h>

@interface ScreenCaptureToolHandler ()

@end

@implementation ScreenCaptureToolHandler {

 UIExtensionsManager* _extensionsManager;

 FSPDFViewCtrl* _pdfViewCtrl;

 TaskServer* _taskServer;

 CGPoint startPoint;

 CGPoint endPoint;

}

@synthesize type;

- (instancetype)initWithUIExtensionsManager:(UIExtensionsManager*)extensionsManager taskServer:(TaskServer*)taskServer

{

 self = [super init];

 if (self) {

 _extensionsManager = extensionsManager;

 _pdfViewCtrl = extensionsManager.pdfViewCtrl;

 _taskServer = taskServer;

 }

 return self;

}

-(NSString*)getName

{

 return @" ";

}

-(BOOL)isEnabled

{

 return YES;

}

-(void)onActivate

{

}

-(void)onDeactivate

{

}

// Save the image to a specified path.

- (void)saveJPGImage:(CGImageRef)imageRef path:(NSString *)path

{

 NSURL *fileURL = [NSURL fileURLWithPath:path];

 CGImageDestinationRef dr = CGImageDestinationCreateWithURL((__bridge CFURLRef)fileURL, kUTTypeJPEG , 1, NULL);

 CGImageDestinationAddImage(dr, imageRef, NULL);

 CGImageDestinationFinalize(dr);

 CFRelease(dr);

}

// Handle the PageView Gesture and Touch event

- (BOOL)onPageViewLongPress:(int)pageIndex recognizer:(UILongPressGestureRecognizer *)recognizer

{

 if (recognizer.state == UIGestureRecognizerStateBegan)

 {

 startPoint = [recognizer locationInView:[_pdfViewCtrl getPageView:pageIndex]];

 endPoint = startPoint;

 }

 else if (recognizer.state == UIGestureRecognizerStateChanged)

 {

 endPoint = [recognizer locationInView:[_pdfViewCtrl getPageView:pageIndex]];

 // Refresh the page view, then the onDraw event will be triggered.

 [_pdfViewCtrl refresh:pageIndex];

 }

 else if (recognizer.state == UIGestureRecognizerStateEnded || recognizer.state == UIGestureRecognizerStateCancelled)

 {

 // Get the size of the Rect.

 CGSize size = {fabs(endPoint.x-startPoint.x), fabs(endPoint.y-startPoint.y)};

 CGPoint origin = {startPoint.x<endPoint.x?startPoint.x:endPoint.x, startPoint.y<endPoint.y?startPoint.y:endPoint.y};

 // Get the Rect.

 CGRect rect = {origin, size};

 int newDibWidth = rect.size.width;

 int newDibHeight = rect.size.height;

 if (newDibWidth < 1 || newDibHeight < 1)

 {

 return YES;

 }

 UIView* pageView = [_pdfViewCtrl getPageView:pageIndex];

 CGRect bound = pageView.bounds;

 // Create a bitmap with the size of the selected area.

 int imgSize = newDibWidth*newDibHeight*4;

 void* pBuff = malloc(imgSize);

 NSData* buff = [NSData dataWithBytes:pBuff length:imgSize];

 FSBitmap* fsbitmap = [[FSBitmap alloc] initWithWidth:newDibWidth height:newDibHeight format:FSBitmapDIBArgb buffer: buff pitch:newDibWidth*4];

 [fsbitmap fillRect:0xFFFFFFFF rect:nil];

 FSRenderer* fsrenderer = [[FSRenderer alloc] initWithBitmap:fsbitmap is_rgb_order:YES];

 FSPDFPage* page = [_pdfViewCtrl.currentDoc getPage:pageIndex];

 // Calculate the display matrix.

 FSMatrix2D* fsmatrix = [page getDisplayMatrix: -rect.origin.x top:-rect.origin.y width:bound.size.width height:bound.size.height rotate:0];

 // Set the render content, then start to render the selected area to the bitmap.

 [fsrenderer setRenderContentFlags:FSRendererRenderPage|FSRendererRenderAnnot];

 FSProgressive *progressive = [fsrenderer startRender:page matrix:fsmatrix pause:nil];

 if (progressive) {

 while (true) {

 if ([progressive resume] != FSProgressiveToBeContinued) {

 break;

 }

 }

 }

 // Convert FSBitmap to CGImage.

 CGDataProviderRef provider = CGDataProviderCreateWithData(NULL, buff.bytes, imgSize, nil);

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 CGBitmapInfo bitmapInfo = kCGBitmapByteOrderDefault|kCGImageAlphaLast;

 CGImageRef image = CGImageCreate(newDibWidth,newDibHeight, 8, 32, newDibWidth * 4,

 colorSpace, bitmapInfo,

 provider, NULL, YES, kCGRenderingIntentDefault);

 // Save the image to a specified path.

 NSString* jpgPath = @"/Users/Foxit/Desktop/ScreenCapture.jpg";

 [self saveJPGImage:image path:jpgPath];

 UIAlertView *alert = [[UIAlertView alloc]initWithTitle:@""

 message:@" The selected area was saved as a JPG stored in the /Users/Foxit/Desktop/ScreenCapture.jpg" delegate:nil cancelButtonTitle:NSLocalizedString(@"OK", @"OK") otherButtonTitles:nil];

 [alert show];

 return YES;

 }

 return YES;

}

// Handle the drawing event.

-(void)onDraw:(int)pageIndex inContext:(CGContextRef)context

{

 if (_extensionsManager.currentToolHandler != self) {

 return;

 }

 CGContextSetLineWidth(context, 2);

 CGContextSetLineCap(context, kCGLineCapSquare);

 UIColor *color = [UIColor redColor];

 CGContextSetStrokeColorWithColor(context, [color CGColor]);

 CGPoint points[] = {startPoint,CGPointMake(endPoint.x, startPoint.y),endPoint,CGPointMake(startPoint.x, endPoint.y)};

 CGContextAddLines(context,points,4);

 CGContextClosePath(context);

 CGContextStrokePath(context);

}

- (BOOL)onPageViewTap:(int)pageIndex recognizer:(UITapGestureRecognizer *)recognizer

{

 return NO;

}

- (BOOL)onPageViewPan:(int)pageIndex recognizer:(UIPanGestureRecognizer *)recognizer

{

 return NO;

}

- (BOOL)onPageViewShouldBegin:(int)pageIndex recognizer:(UIGestureRecognizer *)gestureRecognizer

{

 if (_extensionsManager.currentToolHandler != self) {

 return NO;

 }

 return YES;

}

- (BOOL)onPageViewTouchesBegan:(int)pageIndex touches:(NSSet*)touches withEvent:(UIEvent*)event

{

 return NO;

}

- (BOOL)onPageViewTouchesMoved:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

- (BOOL)onPageViewTouchesEnded:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

- (BOOL)onPageViewTouchesCancelled:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

@end

Note: In the above code, you should specify an existing path to save the image. Here, the path is “@”/Users/Foxit/Desktop/ScreenCapture.jpg””, please replace it with a valid path.

Step 3: In ViewController.m, instantiate a ScreenCaptureToolHandler object and then register it to the UIExtensionsManager.

#import "ScreenCaptureToolHandler.h"

...

@property (nonatomic, strong) ScreenCaptureToolHandler* screenCaptureToolHandler;

...

self.screenCaptureToolHandler = [[ScreenCaptureToolHandler alloc] initWithUIExtensionsManager: self.extensionsManager taskServer:nil];

[self.extensionsManager registerToolHandler:self.screenCaptureToolHandler];

Step 4: In ViewController.m, set the ScreenCaptureToolHandler object as the current tool handler.

Register the Doc event listener.

@interface ViewController ()

...

[self.pdfViewCtrl registerDocEventListener:self];

Set the current tool handler in the onDocOpened function:

- (void)onDocOpened:(FSPDFDoc *)document error:(int)error {

 [self.extensionsManager setCurrentToolHandler:self.screenCaptureToolHandler];

}

Now, we have really finished creating a custom tool in Objective-C, build and run the demo. An iPhone 8 Simulator will be used as an example to run the project. After building the demo successfully, long press and select a rectangular area, and then a message box will be popped up as shown in Figure 5-1. It shows where the image (selected area) was saved to.

Figure 6-1

In order to verify whether the tool captures the selected area successfully, we need to find the screenshot. Go to “desktop”, we can see the image as shown in Figure 6-2.

Figure 6-2

As you can see we have successfully created a Regional Screenshot Tool in Objective-C. This is just an example to show how to create a custom tool with Foxit PDF SDK for iOS. You can refer to it or the demos to develop the tools you want.

Create a Regional Screenshot Tool in Swift

For convenience, we will build this tool based on the “viewer_ctrl_demo_swift” project found in the “samples\swift” folder. Steps required for implementing this tool are as follows:

	Create a class named ScreenCaptureToolHandler that implements the “IToolHandler” interface.
	Handle onPageViewLongPress and onDraw events.
	Instantiate a ScreenCaptureToolHandler object, and then register it to the extensions manager.
	Set the ScreenCaptureToolHandler object as the current tool handler

Step 1: Create a class named ScreenCaptureToolHandler that implements the “IToolHandler” interface.

a) Load the “viewer_ctrl_demo_swift” project in Xcode. Create a class named “ScreenCaptureToolHandler” in the “Source” folder.

b) Let the ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

class ScreenCaptureToolHandler: NSObject, IToolHandler { }

Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.swift as follows:

import Foundation

import MobileCoreServices

import ImageIO

class ScreenCaptureToolHandler: NSObject, IToolHandler {

 public var type: FSAnnotType

 var extensionManager: UIExtensionsManager!

 var pdfViewCtrl: FSPDFViewCtrl!

 var startPoint = CGPoint()

 var endPoint = CGPoint()

 init(extensionsManager: UIExtensionsManager) {

 self.extensionManager = extensionsManager

 self.pdfViewCtrl = extensionsManager.pdfViewCtrl

 self.type = FSAnnotType.annotUnknownType

 super.init()

 }

 func getName() -> String {

 return " "

 }

 func isEnabled() -> Bool {

 return true

 }

 func onActivate() {

 }

 func onDeactivate() {

 }

 // Save the image to a specified path.

 func saveJPGImage(imageRef: CGImage, path: String) {

 let fileURL: CFURL = NSURL.fileURL(withPath: path) as CFURL

 let dr = CGImageDestinationCreateWithURL(fileURL, kUTTypeJPEG, 1, nil)!

 CGImageDestinationAddImage(dr, imageRef, nil)

 CGImageDestinationFinalize(dr)

 }

 // Handle the PageView Gesture and Touch event

 func onPageViewLongPress(_ pageIndex: Int32, recognizer: UILongPressGestureRecognizer) -> Bool {

 if recognizer.state == UIGestureRecognizerState.began {

 startPoint = recognizer.location(in: pdfViewCtrl.getPageView(pageIndex))

 endPoint = startPoint

 }

 else if recognizer.state == UIGestureRecognizerState.changed {

 endPoint = recognizer.location(in: pdfViewCtrl.getPageView(pageIndex))

 // Refresh the page view, then the onDraw event will be triggered.

 pdfViewCtrl.refresh(pageIndex)

 }

 else if recognizer.state == UIGestureRecognizerState.ended || recognizer.state == UIGestureRecognizerState.cancelled {

 // Get the size of the Rect.

 let size = CGSize(width: fabs(endPoint.x - startPoint.x), height: fabs(endPoint.y - startPoint.y))

 let origin = CGPoint(x: (startPoint.x < endPoint.x) ? startPoint.x : endPoint.x, y: (startPoint.y<endPoint.y) ? startPoint.y : endPoint.y)

 // Get the Rect.

 let rect = CGRect(origin: origin, size: size)

 let newDibwidth = rect.size.width

 let newDibHeight = rect.size.height

 if newDibwidth < 1 || newDibHeight < 1 { return true } let pageView = pdfViewCtrl.getPageView(pageIndex) let bound = pageView.bounds // Create a bitmap with the size of the selected area. let imgSize = newDibwidth * newDibHeight * 4 let capacity: Int = Int(newDibwidth) * Int(newDibHeight) * 4 let buff = UnsafeMutablePointer.allocate(capacity: capacity) let pBuff = NSData.init(bytes: UnsafeRawPointer(buff), length: capacity) let pitch: Int = Int(newDibwidth) * 4 guard let fsbitmap = FSBitmap.init(width: Int32(newDibwidth), height: Int32(newDibHeight), format:FSBitmapDIBFormat.dibArgb , buffer: pBuff as Data, pitch: Int32(pitch)) else { return false } fsbitmap.fillRect(0xFFFFFFFF, rect: nil) let fsrenderer = FSRenderer.init(bitmap: fsbitmap, is_rgb_order: true) let page = pdfViewCtrl.currentDoc?.getPage(pageIndex) // Calculate the display matrix. let fsmatrix = page?.getDisplayMatrix(-Int32(rect.origin.x), top: -Int32(rect.origin.y), width: Int32(bound.size.width), height: Int32(bound.size.height), rotate: FSRotation.rotation0) // Set the render content, then start to render the selected area to the bitmap. fsrenderer?.setRenderContentFlags(UInt32(UInt8(FSRendererContentFlag.renderPage.rawValue) | UInt8(FSRendererContentFlag.renderAnnot.rawValue))) let progress = fsrenderer?.startRender(page, matrix: fsmatrix, pause: nil) if ((progress) != nil) { while (true) { if (progress?.resume() != FSProgressiveState.toBeContinued) { break } } } // Convert FSBitmap to CGImage. let releaseData: CGDataProviderReleaseDataCallback = { (info: UnsafeMutableRawPointer?, data:UnsafeRawPointer, size:Int) -> Void in

 }

 let provider: CGDataProvider = CGDataProvider.init(dataInfo: nil, data: pBuff.bytes, size: Int(imgSize), releaseData: releaseData)!

 let colorSpace = CGColorSpaceCreateDeviceRGB()

 let bitmapInfo: CGBitmapInfo = .byteOrderMask

 let image = CGImage(width: Int(newDibwidth), height: Int(newDibHeight), bitsPerComponent: 8, bitsPerPixel: 32, bytesPerRow: Int(newDibwidth) * 4, space: colorSpace, bitmapInfo: bitmapInfo, provider: provider, decode: nil, shouldInterpolate: true, intent: CGColorRenderingIntent.defaultIntent)

 // Save the image to a specified path.

 let jpgPath = "/Users/Foxit/Desktop/ScreenCapture.jpg"

 self.saveJPGImage(imageRef: image!, path: jpgPath)

 let alert = UIAlertView(title: "", message: " The selected area was saved as a JPG stored in the /Users/Foxit/Desktop/ScreenCapture.jpg", delegate: nil, cancelButtonTitle: NSLocalizedString("OK", comment: "OK"))

 alert.show()

 return true

 }

 return true

 }

 // Handle the drawing event.

 func onDraw(_ pageIndex: Int32, in context: CGContext) {

 context.setLineWidth(CGFloat(2))

 context.setLineCap(.square)

 let color = UIColor.red

 context.setStrokeColor(color.cgColor)

 let points = [startPoint, CGPoint(x: CGFloat(endPoint.x), y: CGFloat(startPoint.y)), endPoint, CGPoint(x: CGFloat(startPoint.x), y: CGFloat(endPoint.y))]

 context.addLines(between: points)

 context.closePath()

 context.strokePath()

 }

 func onPageViewTap(_ pageIndex: Int32, recognizer: UITapGestureRecognizer?) -> Bool {

 return false

 }

 func onPageViewPan(_ pageIndex: Int32, recognizer: UIPanGestureRecognizer) -> Bool {

 return false

 }

 func onPageViewShouldBegin(_ pageIndex: Int32, recognizer gestureRecognizer: UIGestureRecognizer) -> Bool {

 return true

 }

 func onPageViewTouchesBegan(_ pageIndex: Int32, touches: Set, with event: UIEvent) -> Bool {

 return false

 }

 func onPageViewTouchesMoved(_ pageIndex: Int32, touches: Set, with event: UIEvent) -> Bool {

 return false

 }

 func onPageViewTouchesEnded(_ pageIndex: Int32, touches: Set, with event: UIEvent) -> Bool {

 return false

 }

 func onPageViewTouchesCancelled(_ pageIndex: Int32, touches: Set, with event: UIEvent) -> Bool {

 return false

 }

}

Note: In the above code, you should specify an existing path to save the image. Here, the path is “/Users/Foxit/Desktop/ScreenCapture.jpg” , please replace it with a valid path.

Step 3: In ViewController.swift, istantiate a ScreenCaptureToolHandler object and then register it to the UIExtensionsManager.

var screenCaptureToolHandler: ScreenCaptureToolHandler!

...

self.screenCaptureToolHandler = ScreenCaptureToolHandler.init(extensionsManager: self.extensionsManager)

self.extensionsManager.register(self.screenCaptureToolHandler)

Step 4: In ViewController.swift, set the ScreenCaptureToolHandler object as the current tool handler.

Register the Doc event listener

class ViewController: UIViewController, UISearchBarDelegate, ISearchEventListener, IDocEventListener

...

self.pdfViewCtrl.register(self)

Set the current tool handler in the onDocOpened function:

func onDocOpened(_ document: FSPDFDoc?, error: Int32) {

 self.extensionsManager.currentToolHandler = self.screenCaptureToolHandler

}

Now, we have really finished creating a custom tool in Swift. Then, build and run the demo. After building the demo successfully, long press and select a rectangular area, and then a message box will be popped up (refer to Figure 6-1). Go to “desktop”, we will see the screenshot (refer to Figure 6-2).

This is just an example to show how to create a custom tool in Swift with Foxit PDF SDK for iOS. You can refer to it or the demos to develop the tools you want.

Implement Foxit PDF SDK for iOS using Cordova

When it comes to developing cross-platform mobile applications, Apache Cordova is an ideal open-source framework. The ‘cordova-plugin-foxitpdf’ is one of the mobile framework plugins provided by us to use with Foxit PDF SDK for iOS. The plugin enables you to achieve powerful PDF viewing features using the Cordova framework. Through this plugin, you can preview any PDF file including PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as commenting and editing PDF documents.

This section will help you get started with Foxit PDF SDK for iOS and the Cordova plugin.

System Requirements

	NPM
	Cordova
	iOS 9 or higher
	Xcode 9 or higher
	Foxit PDF SDK For iOS

Note: The version of Foxit PDF SDK for iOS should match the version of the ‘cordova-plugin-foxitpdf’ plugin. You can specify the plugin version when you install it. Otherwise, the latest version will be installed.

Install Cordova Command-line Tool

Please refer to the Apache Cordova website to install the Cordova command-line tool.

	Download Node.js and then install it.
	Open a terminal, and type sudo npm install -g cordova.

Build a Cordova project using Foxit PDF SDK for iOS

Create a Cordova project

Open a terminal, navigate to the directory where you wish to create your project and type cordova create command. For example, type the command below to create a cordova project:

cordova create test_cordova com.app testCordova

Add Platforms

After creating a Cordova project, navigate to the project directory (cd test_cordova), and type the command below to add iOS platform to build your app.

cd test_cordova

cordova platform add ios

Note: All the subsequent commands are executed in the project directory.

Install plugin

Install ‘cordova-plugin-foxitpdf’ plugin

To install ‘cordova-plugin-foxitpdf’ plugin, choose one of the following ways:

	Download the plugin from npm and install it inside the project folder:

// Install a specific plugin version, for example the 6.3.0 version:

cordova plugin add cordova-plugin-foxitpdf@6.3.0

// Install the latest plugin version (just not specify the version):

cordova plugin add cordova-plugin-foxitpdf

	Install it via repo url directly (generally, in this way, the latest plugin version will be installed):

cordova plugin add https://github.com/foxitsoftware/cordova-plugin-foxitpdf.git

Install ‘cordova-plugin-file’ plugin

Due to the sandbox mechanism of Apple, the file paths are limited to the app’s sandbox. We need the ‘cordova-plugin-file’ plugin to do a file path conversion to obtain the absolute path of a file. Please notice the directory permission when converting. To install ‘cordova-plugin-file’ plugin, type the following command:

cordova plugin add cordova-plugin-file

Integrate Foxit PDF SDK for iOS

Note: In this section, we only introduce how to use the Cordova plugin to open a PDF document. For more APIs about the plugin, please refer to the webpage https://github.com/foxitsoftware/cordova-plugin-foxitpdf.

Download Foxit PDF SDK for iOS package, extract it, and then follow the steps below:

	Copy “libs” folder from the extracted package to “test_cordova/platforms/ios” directory.
	Double-click “testCordova.xcodeproj” found in the “test_cordova/platforms/ios” folder to open the Cordova project in Xcode.
	Add the dynamic FoxitRDK.framework and uiextensionsDynamic.framework in the “test_cordova\platforms\ios\libs” folder to Xcode’s Embedded Binaries.

Left-click the project, find TARGETS -> General -> Embedded Binaries, press on the + button and choose the two frameworks to add (See Figure 71).

Figure 7-1

	Add “WebKit.framework” to Xcode’s Linked Frameworks and Libraries.

Left-click the project, find TARGETS -> General -> Linked Frameworks and Libraries, press on the + button and type “web” into the search box to find “WebKit.framework” faster (See Figure 72), select it and click Add.

Figure 7-2

Then, your Linked Frameworks and Libraries will appear as in Figure 73.

Figure 7-3

	Add a PDF file to the project which will be used as the test file.Next, drag the desired PDF file to the testCordova project, or add the PDF file to Xcode’s Copy Bundle Resources directly (Left-click the project, find TARGETS -> Build Phases -> Copy Bundle Resources, press on the + button, and choose the PDF file to add). For example, add the “complete_pdf_viewer_guide_ios.pdf” in the “samples/test_files” folder of Foxit PDF SDK for iOS package (See Figure 74).

Figure 7-4

	Initialize SDK libraries. Replace the license string (‘sn’ and ‘key’) in “FoxitPdf.m” class (under “test_cordova/plugins/cordova-plugin-foxitpdf/src/ios”). The license files “rdk_sn.txt” and “rdk_key.txt” can be found in the “libs” folder of Foxit PDF SDK for iOS package.

Note: From version 6.3, it provides a new API to initialize the SDK libraries, so that if you use the plugin version 6.3 or higher, please skip this step and follow the next step directly.

	Add the code to the “test_cordova/www/js/index.js” file to open a PDF document.

If you use the plugin version before 6.3, please refer to Plugin version before 6.3, for plugin version 6.3, refer to the Plugin version 6.3, and for plugin version 6.3.1 or higher, refer to Plugin version 6.3.1 or higher.

Plugin verson before 6.3

For the plugin version before 6.3, add the following code (See Figure 7-5) to open a PDF document.

Figure 7-5

var pdfviewOptions = {

 'filePath':cordova.file.applicationDirectory + 'complete_pdf_viewer_guide_ios.pdf',

 'filePathSaveTo': cordova.file.documentsDirectory + 'complete_pdf_viewer_guide_ios_saved.pdf',

 };

 window.FoxitPdf.preview(pdfviewOptions,

 function(succ){

 console.log('succ',succ);},

 function(err){

 console.log('err',err);}

);

Plugin version 6.3

For the plugin version 6.3, you should first call window.FoxitPdf.initialize interface to initialize the SDK libraries, and then call window.FoxitPdf.openDocument interface to open a PDF document. Add the following code (See Figure 7-6).

Note: The license files “rdk_sn.txt” and “rdk_key.txt” can be found in the “libs” folder of Foxit PDF SDK for iOS package.

Figure 7-6

let initOptions = {

 'foxit_sn':'xxx', // The value can be found in the "rdk_sn.txt" (the string after "SN=").

 'foxit_key': 'xxx', // The value can be found in the "rdk_key.txt" (the string after "Sign=").

};

window.FoxitPdf.initialize(initOptions,

 function(success){

 console.log('succ',success);},

 function(error){

 console.log('err',error);});

var pdfviewOptions = {

 'filePath':cordova.file.applicationDirectory + 'complete_pdf_viewer_guide_ios.pdf',

 'filePathSaveTo': cordova.file.documentsDirectory + 'complete_pdf_viewer_guide_ios_saved.pdf',

};

window.FoxitPdf.openDocument(pdfviewOptions,

 function(succ){

 console.log('succ',succ);},

 function(err){

 console.log('err',err);});

},

Note: In version 6.3 or higher, the usage of the new interface window.FoxitPdf.openDocument is the same with the window.FoxitPdf.preview, but we recommend using window.FoxitPdf.openDocument, because window.FoxitPdf.preview will be deprecated in the future. Before calling window.FoxitPdf.openDocument, you should call window.FoxitPdf.initialize to initialize the SDK libraries at first.

Plugin version 6.3.1 or higher

For the plugin version 6.3.1 or higher, you should first call window.FoxitPdf.initialize interface to initialize the SDK libraries, and then call window.FoxitPdf.openDocument interface to open a PDF document. Add the following code (See Figure 7-7).

Note: The license files “rdk_sn.txt” and “rdk_key.txt” can be found in the “libs” folder of Foxit PDF SDK for iOS package.

Figure 7-7

var foxit_sn = 'xxx'; // The value can be found in the "rdk_sn.txt" (the string after "SN=").

var foxit_key = 'xxx'; // The value can be found in the "rdk_key.txt" (the string after "Sign=").

window.FoxitPdf.initialize(foxit_sn, foxit_key);

var path = cordova.file.applicationDirectory + 'complete_pdf_viewer_guide_ios.pdf'; // The PDF file path.

var password = ' '; // The password of the PDF file.

window.FoxitPdf.openDocument(path, password);

var savePath = cordova.file.documentsDirectory + 'complete_pdf_viewer_guide_ios_saved.pdf';// The PDF file path for the new saved file.

window.FoxitPdf.setSavePath(savePath);

Deploy the files in “test_cordova/www” to the “www” folder of the platform (test_cordova/platforms/ios/www). In a terminal, go to the project directory, type the command below:

cordova prepare ios

Run the project

To run the project, you can use the following command or run it in Xcode directly.

Navigate to the project directory, type the command as below:

cordova run ios // for device

cordova emulate ios // for simulator

cordova emulate ios --target iPhone-8-Plus // for a specific simulator

Note: If your Xcode version is 10 or higher, please specify –buildFlag=”-UseModernBuildSystem=0″ when running on command-line. For example cordova run ios –buildFlag=’-UseModernBuildSystem=0′. For more information, please visit at https://github.com/apache/cordova-ios/issues/407.

After running the project successfully, the “complete_pdf_viewer_guide_ios.pdf” document will be displayed as shown in Figure 78.

Figure 7-8

Customize the UI

You can customize the UI including the feature modules, rights management and the properties of UI elements through a JSON file called “uiextensions_config.json” which is located in the “test_cordova\platforms\ios\testCordova\Resources” folder.

To customize the UI, just modify the JSON file as desired, and then rerun the project. For more detailed information about the JSON file, please refer to the section “Configuration Items Description”.

Implement Foxit PDF SDK for iOS using React Native

React Native is an open-source mobile development framework for building native apps using JavaScript and React. The ‘react-native-foxitpdf‘ is only one of the mobile framework plugins provided by us to use with Foxit PDF SDK for iOS. It allows you to achieve powerful PDF viewing features using the React Native framework. Through this plugin, you can preview any PDF file including PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as commenting and editing PDF documents.

This section will help you get started with Foxit PDF SDK for iOS and the React Native plugin.

System Requirements

	NPM
	React-Native
	iOS 9 or higher
	Xcode 9 or newer
	Foxit PDF SDK for iOS

Note: The version of Foxit PDF SDK for iOS should match the version of the ‘react-native-foxitpdf’ plugin. You can specify the plugin version when you install it. Otherwise, the latest version will be installed.

Install React Native Command Line Interface

To build React Native app for iOS, you will need Node, Watchman, the React Native command line interface, and Xcode.

Please refer to the official getting started guide to install React Native command line interface.

	Open a terminal, install brew.
	Install Node and Watchman through brew install node and brew install watchman.
	Install React Native command line interface through sudo npm install -g react-native-cli.

Build a React Native project using Foxit PDF SDK for iOS

Create a React Native project

Open a terminal, navigate to the directory where you wish to create your project and type react-native init <ProjectName> command. For example, type the command below to create a React Native project called “testRN”:

react-native init testRN

Install ‘react-native-foxitpdf’ plugin

Download the plugin from npm and install it inside the project folder. You can install a specific plugin version or install the latest plugin version as below:

// Install a specific plugin version, for example the 6.3.0 version:

cd testRN

npm install @foxitsoftware/react-native-foxitpdf@6.3.0

// Install the latest plugin version (by not specifying the version):

cd testRN

npm install @foxitsoftware/react-native-foxitpdf

Link the project to the plugin:

react-native link @foxitsoftware/react-native-foxitpdf

Note: All the subsequent commands are executed in the project directory.

Integrate Foxit PDF SDK for iOS

Download Foxit PDF SDK for iOS package, extract it, and then follow the steps below:

	Copy “libs” folder from the extracted package to “testRN/ios” directory.
	Double-click “testRN.xcodeproj” found in the “testRN/ios” folder to open the React Native project in Xcode.
	Add the dynamic framework and uiextensionsDynamic.framework in the “testRN/ios/libs” folder to Xcode’s Embedded Binaries.

Left-click the project, find TARGETS -> General -> Embedded Binaries, press on the + button and choose the two frameworks to add (See Figure 81).

Figure 8-1

	Add “WebKit.framework” to Xcode’s Linked Frameworks and Libraries.

Left-click the project, find TARGETS -> General -> Linked Frameworks and Libraries, press on the + button and type “web” into the search box to find “WebKit.framework” faster (See Figure 82), select it and click Add.

Figure 8-2

Then, your Linked Frameworks and Libraries will appear as in Figure 83.

Figure 8-3

	Initialize SDK libraries in the “AppDelegate.m” file. If you use the plugin version 6.3 or higher, please skip this step. In verson 6.3 or higher, it provides a new API to initialize the SDK libraries, which will be introduced in the “testRN\App.js” file later.In “AppDelegate.m” file, add the following code:Import the required header file:

#import <FoxitPDF/PDFManager.h>

Initialize the Foxit PDF SDK libraries with the license, add the code below to the end of the didFinishLaunchingWithOptions function (See Figure 8-4):

NSString *sn = @" ";

NSString *key = @" ";

FSErrorCode eRet = [RNTPDFManager initialize:sn key:key];

if (FSErrSuccess != eRet) {

 return NO;

}

The value of “sn” and “key” can be found in the “rdk_sn.txt” and “rdk_key.txt” files under the “libs” folder of Foxit PDF SDK for iOS package.

Figure 8-4

Note: When adding the code to “AppDelegate.m” file, if you encounter some errors like “cannot find <React/RCTBundleURLProvider.h>”, don’t worry about it. It will disappear after building the project.

	Use the plugin to open a PDF document.If you use the plugin version before 6.3, please refer to Plugin version before 6.3, otherwise refer to Plugin version 6.3 or higher.

Plugin version before 6.3

In the “testRN\App.js” file, you can import the plugin using the following code:

import FoxitPDF from '@foxitsoftware/react-native-foxitpdf';

Then, call the function below to open a PDF document:

FoxitPDF.openPDF('/sample.pdf');

Note: You should push the PDF file into the App’s Document directory in advance. In this tutorial, we use the “complete_pdf_viewer_guide_ios.pdf” document found in “samples/test_files” folder of Foxit PDF SDK for iOS package.

Update the “App.js” file as below, which adds a button to open a PDF document:

import React, {Component} from 'react';

import {Platform, StyleSheet, Text, View, TouchableOpacity} from 'react-native';

import FoxitPDF from '@foxitsoftware/react-native-foxitpdf';

const instructions = Platform.select({

 ios: 'Press Cmd+R to reload,\n' + 'Cmd+D or shake for dev menu',

 android:

 'Double tap R on your keyboard to reload,\n' +

 'Shake or press menu button for dev menu',

});

type Props = {};

export default class App extends Component<Props> {

 onPress() {

 FoxitPDF.openPDF('/complete_pdf_viewer_guide_ios.pdf');

 }

 render() {

 return (

 <View style={styles.container}>

 <TouchableOpacity

 style={styles.button}

 onPress={this.onPress}

 >

 <Text> Open PDF </Text>

 </TouchableOpacity>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 },

 button: {

 alignItems: 'center',

 backgroundColor: '#DDDDDD',

 padding: 10

 },

});

Plugin verson 6.3 or higher

In the “testRN\App.js” file, you can import the plugin using the following code:

import FoxitPDF from '@foxitsoftware/react-native-foxitpdf';

Call the function below to initialize SDK libraries:

FoxitPDF.initialize("foxit_sn", "foxit_key");

Note: The “foxit_sn” can be found in the “rdk_sn.txt” file (the string after “SN=”), and the “foxit_key” can be found in the “rdk_key.txt” file (the string after “Sign=”). The license files “rdk_sn.txt” and “rdk_key.txt” is in the “libs” folder of Foxit PDF SDK for iOS package.

Then, call the following funciton to open a PDF document:

FoxitPDF.openDocument('/sample.pdf');

Note: You should push the PDF file into the App’s Document directory in advance. In this tutorial, we use the “complete_pdf_viewer_guide_ios.pdf” document found in “samples/test_files” folder of Foxit PDF SDK for iOS package.

Update the “App.js” file as below, which adds a button to open a PDF document:

import React, {Component} from 'react';

import {Platform, StyleSheet, Text, View, TouchableOpacity} from 'react-native';

import FoxitPDF from '@foxitsoftware/react-native-foxitpdf';

const instructions = Platform.select({

 ios: 'Press Cmd+R to reload,\n' + 'Cmd+D or shake for dev menu',

 android:

 'Double tap R on your keyboard to reload,\n' +

 'Shake or press menu button for dev menu',

});

type Props = {};

export default class App extends Component<Props> {

 constructor(props) {

 super(props);

 // The "foxit_sn" can be found in the "rdk_sn.txt" file (the string after "SN=").

 // The "foxit_key" can be found in the "rdk_key.txt" file (the string after "Sign=").

 FoxitPDF.initialize("foxit_sn", "foxit_key");

 }

 onPress() {

 FoxitPDF.openDocument('/complete_pdf_viewer_guide_ios.pdf');

 }

 render() {

 return (

 <View style={styles.container}>

 <TouchableOpacity

 style={styles.button}

 onPress={this.onPress}

 >

 <Text> Open PDF </Text>

 </TouchableOpacity>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 },

 button: {

 alignItems: 'center',

 backgroundColor: '#DDDDDD',

 padding: 10

 },

});

Note: In version 6.3 or higher, the usage of the new interface FoxitPDF.openDocument is the same with the FoxitPDF.openPDF, but we recommend using FoxitPDF.openDocument, because FoxitPDF.openPDF may be deprecated in the future. Before calling FoxitPDF.openDocument, you should call FoxitPDF.initialize to initialize the SDK libraries at first.

Run the project

To run the project, you can use the following command or run it in Xcode directly.

Navigate to the project directory, type the command as below:

react-native run-ios

Note: The above command will automatically run the project on the iOS Simulator by default. If you want to run the project on an actual physical iOS device, please refer to the instructions.

After running the project successfully, click the “Open PDF” button. The “complete_pdf_viewer_guide_ios.pdf” document will be displayed as shown in Figure 85.

Figure 8-5

Implement Foxit PDF SDK for iOS using Xamarin

Xamarin is a cross-platform development framework for building native apps using a shared C# codebase. We provide separate bindings for Android and iOS (‘foxit_xamarin_android’ and ‘foxit_xamarin_ios’) for developers to seamlessly integrate powerful PDF functionality of Foxit PDF SDK into their Xamarin apps.

This section will help you get started with Foxit PDF SDK for iOS and the Xamarin framework.

System Requirements

	Visual Studio 2017 for Mac
	Xcode 10.1
	MacOS 10.13.6 or higher
	iOS 9 or higher
	Foxit PDF SDK for iOS

Note: The version of Foxit PDF SDK for iOS should match the version of the ‘foxit_xamarin_ios‘ that you choose and download, or the version that you install from the NuGet.

Install Xamarin on Visual Studio 2017 for Mac

Please refer to the official installation instructions to install Xamarin in Visual Studio 2017 for Mac.

Integrate Foxit PDF SDK into your Xamarin project

There are two ways to integrate Foxit PDF SDK into your Xamarin project:

	Integrate with NuGet (supported from version 6.3)
	Integrate manually by building and referencing DLLs

Integrate with NuGet

It is now possible to integrate Foxit PDF SDK into your Xamarin project through NuGet packages, which is much easier than the second way “Integrate manually by building and referencing DLLs”, and can save you much time.

To integrate Foxit PDF SDK into your Xamarin project through Nuget packages, please follow the steps below:

	In the Solution, right-click the Packages node of your project, and click Add Packages… as shown in Figure 9-1.

Figure 9-1

	In the Add Packages window, search for Foxit.iOS and Foxit.iOS.UIExtensions (See Figure 9-2), and click Add Packages to install the two packages.

Figure 9-2

After finishing the above installation, the Packages of your project will look like Figure 9-3.

Figure 9-3

Integrate manually by building and referencing DLLs

To integrate manually, you should first build DLLs, and then add it as a reference to your project.

Build DLL

Download the ‘foxit_xamarin_ios‘ from GitHub. If you choose and download the version before 6.3, please follow the “The version of ‘foxit_xamarin_ios’ before 6.3”, otherwise follow the “‘foxit_xamarin_ios’ version 6.3 or higher”.

For versions of ‘foxit_xamarin_ios’ before 6.3

For versions before 6.3, you need to build the FoxitRDKBinding project and get the DLL, please follow the steps below:

	Download Foxit PDF SDK for iOS package, extract it, and copy the following files (libraries and licenses) in the “libs” folder of the extracted package to “foxit_xamarin_ios/libs” directory:

	FoxitRDK.framework
	uiextensionsDynamic.framework
	rdk_key.txt
	rdk_sn.txt

	Load FoxitRDKBinding.sln in Visual Studio 2017 for Mac. Double-click the FoxitRDKBinding.sln found in “foxit_xamarin_ios/FoxitRDKBinding”.
	Add FoxitRDK.framework and uiextensionsDynamic.framework as native references to the FoxitRDKBinding project.

In the Solution, right-click the Native Reference node and select Add Native Reference as shown in Figure 9-4.

Figure 9-4

Locate to the “foxit_xamarin_ios/FoxitRDKBinding/libs”, choose FoxitRDK.framework and uiextensionsDynamic.framework as shown in Figure 95. Then click Open.

Figure 9-5

Then, the FoxitRDKBinding project will look like the Figure 9-6.

Figure 9-6

Note: If you only need to display a PDF document, adding FoxitRDK.framework is enough. uiextensionsDynamic.framework is required for the section “Build a full-featured PDF Reader“.

	Build the FoxitRDKBinding project to get the dll. Select Build -> Build FoxitRDKBinding, then the FoxitRDKBinding.dll will be generated in “foxit_xamarin_ios/FoxitRDKBinding/FoxitRDKBinding/bin/Debug (or release)” directory.

‘foxit_xamarin_ios’ version 6.3 or higher

For version 6.3 or higher, you should build the Foxit.iOS and Foxit.iOS.UIExtensions projects and get the DLLs, please follow the steps below:

	Download Foxit PDF SDK for iOS package, extract it, and copy the following files (libraries and licenses) in the “libs” folder of the extracted package to “foxit_xamarin_ios/libs” directory:

	FoxitRDK.framework
	uiextensionsDynamic.framework
	rdk_key.txt
	rdk_sn.txt

	Get Foxit.iOS.dll and Foxit.iOS.UIExtensions.dll.Foxit.iOS.dll is the heart of the SDK including the core functionalities of Foxit PDF SDK for iOS, and Foxit.iOS.UIExtensions.dll extends more powerful PDF related features including UI and resource files. Load Foxit.iOS.UIExtensions.sln in Visual Studio 2017 for Mac. Double-click the Foxit.iOS.UIExtensions.sln found in “foxit_xamarin_ios/Foxit.iOS.UIExtensions”. Select Build -> Build All, then the Foxit.iOS.dll and Foxit.iOS.UIExtensions.dll will be generated in “foxit_xamarin_ios/Foxit.iOS.UIExtensions/Foxit.iOS.UIExtensions/bin/Debug (or release)” directory.

Note: For getting Foxit.iOS.dll, you can build the Foxit.iOS project directly. Double-click the Foxit.iOS.sln found in “foxit_xamarin_ios/Foxit.iOS”. Select Build -> Build Foxit.iOS, then the Foxit.iOS.dll will be generated in “foxit_xamarin_ios/Foxit.iOS/Foxit.iOS/bin/Debug (or release)” directory.

Add the built DLLs as references to your project

If you use the version before 6.3, please follow the section “The version of ‘foxit_xamarin_ios’ before 6.3”, otherwise follow the section “‘foxit_xamarin_ios’ version 6.3 or higher”.

The version of ‘foxit_xamarin_ios’ before 6.3

For version before 6.3, please follow the steps below to add FoxitRDKBinding.dll as a reference to your project. We assume that you have got the FoxitRDKBinding.dll, if not, please refer to Build DLLs (The version of ‘foxit_xamarin_ios’ before 6.3) section to build the FoxitRDKBinding project and generate the FoxitRDKBinding.dll.

	In the Solution, right-click the References node and select Edit References… as shown in Figure 9-7.

Figure 9-7

	In the Edit References dialog, click Browse… (See Figure 9-8) to find the FoxitRDKBinding.dll (in the “foxit_xamarin_ios/FoxitRDKBinding/FoxitRDKBinding/bin/Debug (or release)” folder), select it and then click Add, which is shown in Figure 9-9.

Figure 9-8

Figure 9-9

	Then, the FoxitRDKBinding.dll will appear in the list and has already been checked (See Figure 9-10). Click OK.

Figure 9-10

	After finishing the above steps, the References of your project will look like the Figure 9-11.

Figure 9-11

‘foxit_xamarin_ios’ version 6.3 or higher

For version 6.3 or higher, you need to add the Foxit.iOS.dll and Foxit.iOS.UIExtensions.dll as references to your project. We assume that you have got the two DLLs, if not, please refer to Build DLLs (‘foxit_xamarin_ios’ version 6.3 or higher) section to build the Foxit.iOS and Foxit.iOS.UIExtensions projects and generate the Foxit.iOS.dll and Foxit.iOS.UIExtensions.dll.

Please refer to the steps outlined in the “Add the built DLLs as reference to your project (The version of ‘foxit_xamarin_ios’ before 6.3)” to add the Foxit.iOS.dll and Foxit.iOS.UIExtensions.dll as references to your project. After finishing, the References of your project will look like the Figure 9-11.

Figure 9-12

Build a Xamarin iOS project using Foxit PDF SDK for iOS

This section will help you to quickly build a full-featured PDF Reader in Xamarin iOS platform using the dll got from the previous section with step-by-step instructions provided.

Create a new Xamarin iOS project

Open Visual Studio 2017 for Mac, choose File -> New Solution…, and then select iOS -> App -> Single View App as shown in Figure 9-13. Then, click Next.

Figure 9-13

In the Configure your iOS app dialog, set the options for your new project as desired. For example, we set the APP Name to “TestXamarin” and the Organization Identifier to “com.foxit” as shown in Figure 914. Then, click Next.

Figure 9-14

Choose the location where the project places to. For example, we place the project on the Desktop as shown in Figure 915. Click Create.

Figure 9-15

Integrate Foxit PDF SDK into the project

Please refer to section “Integrate Foxit PDF SDK into your Xamarin project” to integrate the Foxit PDF SDK into the created project. We recommend using the first way “Integrate with NuGet”, which is more easy and convenient.

Initialize Foxit SDK Library

Before calling any APIs, you must first initialize Foxit SDK library by using the function FSLibrary::Initialize. Finish the initialization in the FinishedLaunching method within the AppDelegate.cs file (See Figure 916).

using Foundation;

using UIKit;

using FoxitRDK;

namespace TestXamarin

{

 // The UIApplicationDelegate for the application. This class is responsible for launching the

 // User Interface of the application, as well as listening (and optionally responding) to application events from iOS.

 [Register("AppDelegate")]

 public class AppDelegate : UIApplicationDelegate

 {

 // class-level declarations

 public override UIWindow Window

 {

 get;

 set;

 }

 public override bool FinishedLaunching(UIApplication application, NSDictionary launchOptions)

 {

 // Override point for customization after application launch.

 // If not required for your application you can safely delete this method

 // The value of "sn" can be found in the "rdk_sn.txt".

 // The value of "key" can be found in the "rdk_key.txt".

 string sn = "xxx";

 string key = "xxx";

 // Initialize the Foxit SDK library.

 var errCode = FSLibrary.Initialize(sn, key);

 if (errCode != FSErrorCode.Success)

 return false;

 return true;

 }

}

Figure 9-16

Note: The value of “sn” can be found in the “rdk_sn.txt“ (the string after “SN=”) and the value of “key” can be found in the “rdk_key.txt“ (the string after “Sign=”). The trial license files (rdk_sn.txt and rdk_key.txt) can be found in the “foxit_xamarin_ios/libs” folder or in the “libs” folder of Foxit PDF SDK for iOS package.

Display a PDF document using PDFViewCtrl

To display a PDF document, please first add a PDF document to the project’s Resources which will be used as the test file.

In the Solution, right-click the Resources, select Add -> Add Files…, find the PDF document as you wish. For example, the “complete_pdf_viewer_guide_ios.pdf” under the “samples/test_files” folder of the Foxit PDF SDK for iOS package. After adding, you can see the PDF as shown in Figure 917.

Figure 9-17

Then, add the following code to ViewController.cs to display a PDF document. It’s easy to present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call FSPDFViewCtrl::OpenDoc function to open and render the PDF document.

Update ViewController.cs as follows:

using System;

using UIKit;

using FoxitRDK;

using Foundation;

namespace TestXamarin

{

 public partial class ViewController : UIViewController

 {

 private FSPDFViewCtrl pdfViewCtrl;

 protected ViewController(IntPtr handle) : base(handle)

 {

 // Note: this .ctor should not contain any initialization logic.

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 // Instantiate a PDFViewCtrl object.

 pdfViewCtrl = new FSPDFViewCtrl(new CoreGraphics.CGRect(0, 0, View.Frame.Size.Width, View.Frame.Size.Height));

 // Open a PDF document.

 string path = NSBundle.MainBundle.PathForResource("complete_pdf_viewer_guide_ios", "pdf");

 pdfViewCtrl.OpenDoc(path, null, null);

 // Add the pdfViewCtrl to the root view.

 View.AddSubview(pdfViewCtrl);

 }

 public override void DidReceiveMemoryWarning()

 {

 base.DidReceiveMemoryWarning();

 // Release any cached data, images, etc that aren't in use.

 }

 }

}

In this chapter, we build and run the project on an iPhone 8 Simulator. After building the project, you will see that the “complete_pdf_viewer_guide_ios.pdf” document is displayed as shown in Figure 914. Now, this sample app has some basic PDF features, such as zooming in/out and page turning.

Figure 9-18

Build a full-featured PDF Reader

To build a full-featured PDF reader, all you need to do is to instantiate a UIExtensionsManager object, and then set it to FSPDFViewCtrl.

using FoxitRDKUI;

...

private UIExtensionsManager uiExtensionsManager;

...

// Instantiate a UIExtensionsManager object and set it to pdfViewCtrl.

uiExtensionsManager = new UIExtensionsManager(pdfViewCtrl);

pdfViewCtrl.ExtensionsManager = uiExtensionsManager;

The whole update of ViewController.cs is as follows:

using System;

using UIKit;

using FoxitRDK;

using Foundation;

using FoxitRDKUI;

namespace TestXamarin

{

 public partial class ViewController : UIViewController

 {

 private FSPDFViewCtrl pdfViewCtrl;

 private UIExtensionsManager uiExtensionsManager;

 protected ViewController(IntPtr handle) : base(handle)

 {

 // Note: this .ctor should not contain any initialization logic.

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 // Instantiate a PDFViewCtrl object.

 pdfViewCtrl = new FSPDFViewCtrl(new CoreGraphics.CGRect(0, 0, View.Frame.Size.Width, View.Frame.Size.Height));

 // Open a PDF document.

 string path = NSBundle.MainBundle.PathForResource("complete_pdf_viewer_guide_ios", "pdf");

 pdfViewCtrl.OpenDoc(path, null, null);

 // Add the pdfViewCtrl to the root view.

 View.AddSubview(pdfViewCtrl);

 // Instantiate a UIExtensionsManager object and set it to pdfViewCtrl.

 uiExtensionsManager = new UIExtensionsManager(pdfViewCtrl);

 pdfViewCtrl.ExtensionsManager = uiExtensionsManager;

 }

 public override void DidReceiveMemoryWarning()

 {

 base.DidReceiveMemoryWarning();

 // Release any cached data, images, etc that aren't in use.

 }

 }

}

Add permissions to access camera, microphone and photo library

In order to access the camera, microphone and photo library, you need to add the permission configuration in the “Info.plist” as shown in Figure 919.

Figure 9-19

Run the project

After building the project, you will see that the “complete_pdf_viewer_guide_ios.pdf” document is displayed as shown in Figure 920. Now, it is a full-featured PDF Reader which includes all the features in Foxit PDF SDK for iOS and it also supports to open a RMS protected document.

Figure 9-20

Customize the UI

For how to customize the UI in your Xamarin iOS project, you can refer to the section “Customizing User Interface”.

FAQ

Bitcode Support

What is Bitcode? Does Foxit PDF SDK for iOS support Bitcode?

Bitcode is an intermediate representation of a compiled binary. Including bitcode will allow Apple to re-optimize your app binary in the future without the need to submit a new version of your app to the store.

Yes. Foxit PDF SDK for iOS supports Bitcode since version 3.0.

Open a PDF document from a specified PDF file path

How do I open a PDF document from a specified PDF file path?

Foxit PDF SDK provides multiple interfaces to open a PDF document. You can open a PDF document from a specified PDF file path, or from a memory buffer. For from a specified PDF file path, there are two ways to do that.

The first one is that just use the openDoc interface, which includes the operations of creating a PDF document object (initWithPath), loading the document content (load), and setting the PDF document object to view control (setDoc). Following is the sample code:

Note: The openDoc interface is only available for opening a PDF document from a file path. If you want to customize to load a PDF document, you can implement it in the callback function (FSFileReadCallback), and then create a document object with a FireRead instance using initWithHandler. Next, also load the document content using (load), and set the PDF document object to view control using setDoc.

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document from a specified PDF file path.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

The second one is that use the initWithPath interface to create a PDF document object, use load interface to load the document content, and then use setDoc to set the PDF document object to view control. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc* pdfdoc = [[FSPDFDoc alloc] initWithPath: pdfPath];

 // Load the unencrypted document content.

 if(FSErrSuccess != [pdfdoc load:nil]) {

 return;

 }

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Set the document to view control.

 [pdfViewCtrl setDoc:pdfdoc];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

Display a specified page when opening a PDF document

What should I do if I want to display a specified page when opening a PDF document?

To display a specified page when opening a PDF file, the interface [pdfViewCtrl gotoPage: (int) animated: (BOOL)] should be used. Foxit PDF SDK utilizes multi-thread to improve rendering speed, so please make sure the document has been loaded successfully before using the gotoPage interface. There are two ways to realize the feature as follows:

The first one is that making a conditional statement in the openDoc interface to ensure that only when the document loading is complete, then call the gotoPage. If not, the gotoPage interface will not work, and the first page will be displayed. It is because the openDoc interface starts a new thread to perform the operation. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document from a specified PDF file path, and go to the third page when completing the document loading.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:^(enum FSErrorCode error){

 if(error == FSErrSuccess)

 // Display the third page.

 [pdfViewCtrl gotoPage:2 animated:NO];

 }];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

The second one is that implement the protocol, and then call the gotoPage interface in the onDocOpened event. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController <IDocEventListener>

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Register the PDF document event listener.

 [pdfViewCtrl registerDocEventListener:self];

 // Open an unencrypted PDF document from a specified PDF file path.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

#pragma IDocEventListener

-(void)onDocOpened:(FSPDFDoc *)document error:(int)error

{

 // display the third page.

 [pdfViewCtrl gotoPage:2 animated:NO];

}

@end

License key and serial number cannot work

I have downloaded the SDK package from your website without making any changes. Why can’t the license key and serial number work?

Generally, the package uploaded to the website is supposed to work. It has been tested before it is uploaded. So, if you find the license key and serial number cannot work, it may be caused by the time of your device. If the device’s time is earlier than the StartDate in the rdk_key.txt file found in the “libs” folder of the download package, the “librdk.so” library will be failed to unlock. Please check the time of your device.

Add a link annotation to a PDF file

How can I add a link annotation to a PDF file?

To add a link annotation to a PDF file, you should first call the FSPDFPage::addAnnot to add an annotation to a specified page, then call FSAction::Create to create an action, and set the action to the added link annotation. Following is the sample code for adding a URI link annotation to the first page of a PDF file:

#define DOCUMENT_PATH [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]

...

// Get the path of a PDF

NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

// load the unencrypted document content.

 [document load:nil];

// Get the first page of the PDF file.

FSPDFPage *page = [document getPage:0];

// Add a link annotation to the first page.

FSRectF *rect = [[FSRectF alloc] initWithLeft1:250 bottom1:650 right1:450 top1:750];

FSLink *linkAnnot = [[FSLink alloc] initWithAnnot:[page addAnnot: FSAnnotLink rect:rect]];

// Create a URI action and set the URI.

FSURIAction *uriAction = [[FSURIAction alloc] initWithAction:[FSAction create:document action_type:FSActionTypeURI]];

[uriAction setURI:@"https://www.foxit.com"];

// Set the action to link annotation.

[linkAnnot setAction:uriAction];

// Reset appearance stream.

 [linkAnnot resetAppearanceStream];

// Save the document that has added the link annotaiton.

[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_annot.pdf"] save_flags:FSPDFDocSaveFlagNormal];

Insert an image into a PDF file

How do I insert an image into a PDF file?

To insert an image into a PDF file, you can call FSPDFPage::addImageFromFilePath interface. Following is the sample code for inserting an image into the first page of a PDF file:

Note: Before calling FSPDFPage::addImageFromFilePath interface, you should get and parse the page that you want to add the image.

#define DOCUMENT_PATH [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]

...

// Get the path of a PDF.

NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

// load the unencrypted document content.

[document load:nil];

// Get the first page of the PDF file.

FSPDFPage *page = [document getPage:0];

// Parse the page.

if (![page isParsed]) {

 FSProgressive* progressive = [page startParse: FSPDFPageParsePageNormal pause:nil is_reparse:NO];

 while ([progressive resume] == FSProgressiveToBeContinued) {

 continue;

 }

}

// Get the image path.

NSString* imagePath = @"/Users/xiaole/Desktop/1.png";

// Add an image to the first page.

FSPointF* point = [[FSPointF alloc] init];

[point set:100 y:300];

[page addImageFromFilePath:imagePath position:point width:100 height:120 auto_generate_content:YES];

// Save the document that has added the link annotaiton.

[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_image.pdf"] save_flags:FSPDFDocSaveFlagNormal];

Highlight the links in PDF documents and set the highlight color

How can I set whether to highlight the links in PDF documents? And how to set the highlight color if I want to highlight links?

By default, highlighting links in PDF documents is enabled. If you want to disable it or to set the highlight color, you can do it in the configuration JSON file (only support for version 6.3) or by calling the APIs.

Note: If you want to set the highlight color, please make sure the highlighting links feature is enabled.

Through JSON file

Set “”highlightLink”: false,” to disable highlighting the links in PDF document.

Set “”highlightLinkColor”: “#16007000″,” to set the highlight color (input the color value as you wish).

Through calling API

UIExtensionsManager.enableHighlightLinks property is provided to set whether to enable highlighting the links in PDF documents. If you do not want to highlight links, please set the parameter to “false” as follows:

// Assume you have already Initialized a UIExtensionsManager object

extensionsManager.enableHighlightLinks = false;

UIExtensionsManager.linksHighlightColor () property is used to set the highlight color. Following is a sample for setting this property:

// Assume you have already Initialized a UIExtensionsManager object

extensionsManager.linksHighlightColor = [UIColor colorWithRed:0 green:0 blue:1 alpha:0.3];

Highlight the form fields in PDF form files and set the highlight color

How can I set whether to highlight the form fields in PDF form files? And how to set the highlight color if I want to highlight form fields?

By default, highlighting form fields in PDF documents is enabled. If you want to set the highlight color, please make sure you have not disabled the highlighting form fields feature.

From version 6.3, you can disable/enable highlighting form fields or set the highlight color easily in the configuration JSON file, just set the following two items:

"highlightForm": true,

"highlightFormColor": "#200033cc",

For the version before 6.3, if you want to disable/enable highlighting form fields or set the highlight color, you should modify the source code of the UI Extensions Component using FSFormFiller::highlightFormFields and FSFormFiller::setHighlightColor interfaces.

FSFormFiller::highlightFormFields interface is provided to set whether to enable highlighting the form fields in PDF form files. Please refer to section 4.4 “Customize UI implementation through source code” to add the “uiextensions” project found in the “libs/uiextensions_src” folder to your project. Then, find the onDocOpened function in “UIExtensions/Form/FormAnnotHandler.m”, and set the parameter of FSFormFiller::highlightFormFields to “false” as follows:

- (void)onDocOpened:(FSPDFDoc*)document error:(int)error

{

...

...

[_formFiller highlightFormFields:false];

}

FSFormFiller::setHighlightColor interface is used to set the highlight color. Following is a sample for calling this API:

- (void)onDocOpened:(FSPDFDoc*)document error:(int)error

{

...

...

[_formFiller highlightFormFields:ture];

[_formFiller setHighlightColor:0x4b00ff00];

}

Indexed Full Text Search support

Does Foxit PDF SDK support Indexed Full Text Search? If yes, how can I use it to search through PDF files stored offline on my mobile device?

Yes. Foxit PDF SDK supports Indexed Full Text Search.

To use this feature, follow the steps below:

Get document source information. Create a document source based on a directory which will be used as the search directory.

-(id)initWithDirectory: (NSString *)directory;

Create a full text search object, and set a path of database to store the indexed data.

-(id)init;

-(void)setDataBasePath:(NSString *)path_of_data_base;

Start to index the PDF documents which receive from the source.

-(FSProgressive*)startUpdateIndex: (FSDocumentsSource*)source pause: (id)pause reUpdate:(BOOL)reUpdate;

Note: You can index a specified PDF file. For example, if the contents of a PDF file have been changed, you can re-index it using the following API:

-(BOOL)updateIndexWithFilePath: (NSString *)file_path;

Search the specified keyword from the indexed data source. The search results will be returned to external by a specified callback function when a matched one is found.

-(BOOL)searchOf: (NSString *)match_string rank_mode:(FSFullTextSearchRankMode)rank_mode callback: (id)Callback;

Following is a sample for how to use it:

- (void)FullTextSearch {

NSString *directory = @"INPUT_DIRECTORY";

FSDocumentsSource* docs = [[FSDocumentsSource alloc] initWithDirectory:directory];

FSFullTextSearch* fulltextSearch = [FSFullTextSearch init];

NSString* dbPath = @"The path of data base to store the indexed data...";

[fulltextSearch setDataBasePath:dbPath];

FSProgressive* progressive = [fulltextSearch startUpdateIndex:docs pause:nil reUpdate:NO];

if (progressive) {

while (true) {

if ([progressive resume] != FSProgressiveToBeContinued) {

break;

}

}

}

[fulltextSearch searchOf:@"Foxit" RankMode:FSFullTextSearchRankNone callback:[[FSSearchCallbackImp alloc] init]];

}

@end

A sample callback function is as follows:

@interface FSSearchCallbackImp: NSObject

@end

@implementation FSSearchCallbackImp

-(int)retrieveSearchResult:(NSString*)file_path page_index:(int)page_index match_result:(NSString*)match_result match_start_text_index:(int)match_start_text_index match_end_text_index:(int)match_end_text_index

{

NSLog (@"file_path: %@\n", file_path);

NSLog (@"page_index: %i， match_start_text_index: %i, match_end_text_index: %i\n", page_index, match_start_text_index, match_end_text_index);

NSLog (@"match_result: %@\n\n", match_result);

return 0;

}

@end

Note:

	The indexed full text search provided by Foxit PDF SDK for iOS will go through a directory recursively, so that both the files and the folders under the search directory will be indexed.
	If you want to abort the index process, you can pass in a pause callback parameter to the startUpdateIndex The callback function NeedPauseNow will be invoked once a PDF document is indexed, so that the caller can abort the index process when the callback NeedPauseNow return “true”.
	The location of the indexed database is set by setDataBasePath If you want to clear the indexed database, you shoud do it manually. And now, removing a file from index function is not supported.
	Every search result of the searchOf interface is returned to external by a specified callback. Once the searchOf interface returns “true” or “false”, it means the searching is finished.

Print PDF document

Does Foxit PDF SDK for iOS support to print a PDF document? If yes, how can I use it?

Yes. Foxit PDF SDK for iOS supports the print feature from version 5.1. You can press the Wireless Print button on the More Menu view in the Complete PDF viewer demo to print the PDF document. Furthermore, you can call the following two APIs to print the PDF documents:

// for iPhone and iTouch

(void)printDoc:(FSPDFDoc *)doc animated:(BOOL)animated jobName:(nullable NSString *)jobName delegate:(nullable id)delegate completionHandler:(nullable UIPrintInteractionCompletionHandler)completion;

// for iPad

(void)printDoc:(FSPDFDoc *)doc fromRect:(CGRect)rect inView:(UIView *)view animated:(BOOL)animated jobName:(nullable NSString *)jobName delegate:(nullable id)delegate completionHandler:(nullable UIPrintInteractionCompletionHandler)completion;

Following is a sample for how to use it:

UIPrintInteractionCompletionHandler completion = ^(UIPrintInteractionController *_Nonnull printInteractionController, BOOL completed, NSError *_Nullable error) {

if (error) {

UIAlertAction* action = [UIAlertAction actionWithTitle:[@"Warning:" stringByAppendingString:error.localizedDescription] style:UIAlertActionStyleDefault handler:nil];

UIAlertController* controller = [[UIAlertController alloc] init];

[controller addAction:action];

[self showViewController:controller sender:nil];

}

};

NSString *fileName = @"xxx.pdf";

FSPDFDoc* doc = [[FSPDFDoc alloc] initWithPath:fileName];

[UIExtensionsManager printDoc: doc animated:YES jobName:fileName delegate:nil completionHandler:completion];

Night mode color settings

How can I set the night mode color?

From version 6.3, you can set the night mode color easily in the configuration JSON file, just set the following two items:

"mapForegroundColor": "#5d5b61",

"mapBackgroundColor": "#000056",

From version 5.1, if you want to set the night mode color, please first set the properties FSPDFViewCtrl.mappingModeBackgroundColor and FSPDFViewCtrl.mappingModeForegroundColor, and then set the FSPDFViewCtrl.colorMode to FSRendererColorModeMapping.

Note: If the FSPDFViewCtrl.colorMode has already been set to FSRendererColorModeMapping, you still need to set it again after updating the FSPDFViewCtrl.mappingModeBackgroundColor and FSPDFViewCtrl.mappingModeForegroundColor. Otherwise, the settings may not work.

The properties should be changed in the source code of the UI Extensions Component, please refer to section “Customize UI implementation through source code” to add the “uiextensions” project found in the “libs/uiextensions_src” folder to your project. Then, find the settingBar function in “UIExtensions/UIExtensionsManager.m”, and set the color as you like.

Following is a sample to set the night mode color:

- (void)settingBar:(SettingBar *)settingBar setNightMode:(BOOL)isNightMode {

if (isNightMode) {

// Set background color.

self.pdfViewCtrl.mappingModeBackgroundColor = [UIColor redColor];

// Set foreground color.

self.pdfViewCtrl.mappingModeForegroundColor = [UIColor greenColor];

// Set color mode.

self.pdfViewCtrl.colorMode = FSRendererColorModeMapping;

// set the background color for the areas that are out of the pdfviewctrl.

self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:20.0/255.0 green:20.0/255.0 blue:20.0/255.0 alpha:1.0];

}

else {

self.pdfViewCtrl.colorMode = FSRendererColorModeNormal;

self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:230.0/255.0 green:230.0/255.0 blue:230.0/255.0 alpha:1.0];

}

self.hiddenSettingBar = YES;

}

Upload Foxit SDK Framework to App Store

Why do I meet “Invalid Binary Architecture” error when I uploaded my app embedded your SDK Framework to Apple App Store?

Foxit SDK Framework includes arm64, armv7, i386, and x86_64 architectures, but the i386, and x86_64 architectures are not allowed to be uploaded to Apple App Store so that you will meet the “Invalid Binary Architecture” error if you use the framework directly.

To solve this problem, Foxit SDK provides a script named “prepare-framework-to-publish-to-appstore.sh” found in the “libs” folder to strip the arm architectures, and then output the library to the directory “./device/FoxitRDK.framework”. You should use this library in your project and then you can publish your app to Apple App Store.

Localization settings

How to change Localization settings with Foxit PDF SDK for iOS?

Foxit PDF SDK for iOS allows users to customize the UIExtensions project language by themselves through localization files. For how to change Localization settings with Foxit PDF SDK for iOS, please refer to the article: https://developers.foxit.com/kb/article/change-localization-settings-pdf-sdk-ios/

Technical Support

Reporting Problems

Foxit offers world class support for its products and are fully supported by the PDF industry’s largest development team of support engineers. If you encounter any technical questions or bug issues when using Foxit PDF SDK for iOS, please submit the problem report to the Foxit support team at https://www.foxit.com/support/ticket.html. In order to better help you solve the problem, please provide the following information:

	Contact details
	Foxit PDF SDK for iOS product and version
	Your Operating System and IDE version
	Detailed description of the problem
	Any other related information, such as log file or error screenshot

Contact Information

You can contact Foxit directly, please use the contact information as follows:

Foxit Support:

http://www.foxit.com/support/

Sales contact phone number:

Phone: 1-866-680-3668

Support & General Contact:

Phone: 1-866-MYFOXIT or 1-866-693-6948

Updated on December 2, 2021

Was this article helpful?

Yes, it was helpful
(0)

No, it was not helpful
(0)

Thanks for your feedback. If you have a comment on how to improve the article, you can write it here:

Submit feedback

Web Demo

Try our SDK for Web in your browser, no download or login required.

View demo

Ready to get started?

Licensing tailored to you

Our sales engineers are PDF experts and coders by trade. They’ll answer any technical questions, help you build a proof of concept, and create a license that suits your needs.

Request a Quote

30-day free trial

Try our advanced PDF technology on your chosen platform(s), completely free, for 30 days.

Download trial

Products

	PDF SDK for Web
	PDF SDK for Windows
	PDF SDK for Mac
	PDF SDK for Linux
	PDF SDK for iOS
	PDF SDK for Android
	PDF Conversion SDK
	Plugins
	Features & Add-ons

Business success

	Industries
	Case Studies
	Whitepapers
	GDPR Compliance

Documentation

	Documentation home

News

	Blog
	Changelog
	Latest Release

Company

	LinkedIn
	Twitter
	Facebook
	Privacy Policy
	Contact Sales

© Foxit Software Incorporated. All rights reserved.

